Spaces:
Running
Running
File size: 7,001 Bytes
dc376d9 0975917 dc376d9 0975917 dc376d9 0975917 dc376d9 0975917 dc376d9 0975917 dc376d9 0975917 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import json
from datetime import datetime, timezone
from typing import Dict, Any
from nc_py_api import Nextcloud
import arena_config
from leaderboard import load_leaderboard, get_human_readable_name, get_model_size
def get_internal_stats() -> Dict[str, Any]:
leaderboard = load_leaderboard()
total_battles = sum(
model_data['wins'] + model_data['losses']
for model_data in leaderboard.values()
)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
active_models = len(leaderboard)
most_battles = max(
(model_data['wins'] + model_data['losses'], model)
for model, model_data in leaderboard.items()
)
highest_win_rate = max(
(model_data['wins'] / (model_data['wins'] + model_data['losses']) if (model_data['wins'] + model_data['losses']) > 0 else 0, model)
for model, model_data in leaderboard.items()
)
most_diverse_opponent = max(
(len(model_data['opponents']), model)
for model, model_data in leaderboard.items()
)
stats = {
"timestamp": timestamp,
"total_battles": total_battles,
"active_models": active_models,
"most_battles": {
"model": get_human_readable_name(most_battles[1]),
"battles": most_battles[0]
},
"highest_win_rate": {
"model": get_human_readable_name(highest_win_rate[1]),
"win_rate": f"{highest_win_rate[0]:.2%}"
},
"most_diverse_opponent": {
"model": get_human_readable_name(most_diverse_opponent[1]),
"unique_opponents": most_diverse_opponent[0]
}
}
return stats
def save_internal_stats(stats: Dict[str, Any]) -> bool:
nc = Nextcloud(
nextcloud_url=arena_config.NEXTCLOUD_URL,
nc_auth_user=arena_config.NEXTCLOUD_USERNAME,
nc_auth_pass=arena_config.NEXTCLOUD_PASSWORD
)
try:
json_data = json.dumps(stats, indent=2)
nc.files.upload(arena_config.NEXTCLOUD_INTERNAL_STATS_PATH, json_data.encode('utf-8'))
return True
except Exception as e:
print(f"Error saving internal stats to Nextcloud: {str(e)}")
return False
def save_local_stats(stats: Dict[str, Any], filename: str = "internal_stats.json") -> bool:
try:
with open(filename, 'w') as f:
json.dump(stats, f, indent=2)
return True
except Exception as e:
print(f"Error saving internal stats to local file: {str(e)}")
return False
def get_fun_stats() -> Dict[str, Any]:
leaderboard = load_leaderboard()
total_battles = sum(
model_data['wins'] + model_data['losses']
for model_data in leaderboard.values()
)
timestamp = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S UTC")
active_models = len(leaderboard)
most_battles = max(
(model_data['wins'] + model_data['losses'], model)
for model, model_data in leaderboard.items()
)
highest_win_rate = max(
(model_data['wins'] / (model_data['wins'] + model_data['losses']) if (model_data['wins'] + model_data['losses']) > 0 else 0, model)
for model, model_data in leaderboard.items()
)
most_diverse_opponent = max(
(len(model_data['opponents']), model)
for model, model_data in leaderboard.items()
)
# Existing fun stats
underdog_champion = min(
((get_model_size(model), model_data['wins'] / (model_data['wins'] + model_data['losses'])) if (model_data['wins'] + model_data['losses']) > 0 else (get_model_size(model), 0), model)
for model, model_data in leaderboard.items()
)
most_consistent = min(
(abs(model_data['wins'] - model_data['losses']), model)
for model, model_data in leaderboard.items()
if (model_data['wins'] + model_data['losses']) > 10 # Minimum battles threshold
)
biggest_rivalry = max(
(results['wins'] + results['losses'], (model, opponent))
for model, data in leaderboard.items()
for opponent, results in data['opponents'].items()
)
# New fun stats
david_vs_goliath = max(
((get_model_size(opponent) - get_model_size(model), model_data['opponents'][opponent]['wins']), (model, opponent))
for model, model_data in leaderboard.items()
for opponent in model_data['opponents']
if get_model_size(opponent) > get_model_size(model) and model_data['opponents'][opponent]['wins'] > 0
)
comeback_king = max(
(model_data['wins'] - model_data['losses'], model)
for model, model_data in leaderboard.items()
if model_data['losses'] > model_data['wins']
)
pyrrhic_victor = min(
(model_data['wins'] / (model_data['wins'] + model_data['losses']) if (model_data['wins'] + model_data['losses']) > 0 else float('inf'), model)
for model, model_data in leaderboard.items()
if model_data['wins'] > model_data['losses'] and (model_data['wins'] + model_data['losses']) > 10
)
stats = {
"timestamp": timestamp,
"total_battles": total_battles,
"active_models": active_models,
"most_battles": {
"model": get_human_readable_name(most_battles[1]),
"battles": most_battles[0]
},
"highest_win_rate": {
"model": get_human_readable_name(highest_win_rate[1]),
"win_rate": f"{highest_win_rate[0]:.2%}"
},
"most_diverse_opponent": {
"model": get_human_readable_name(most_diverse_opponent[1]),
"unique_opponents": most_diverse_opponent[0]
},
"underdog_champion": {
"model": get_human_readable_name(underdog_champion[1]),
"size": f"{underdog_champion[0][0]}B",
"win_rate": f"{underdog_champion[0][1]:.2%}"
},
"most_consistent": {
"model": get_human_readable_name(most_consistent[1]),
"win_loss_difference": most_consistent[0]
},
"biggest_rivalry": {
"model1": get_human_readable_name(biggest_rivalry[1][0]),
"model2": get_human_readable_name(biggest_rivalry[1][1]),
"total_battles": biggest_rivalry[0]
},
"david_vs_goliath": {
"david": get_human_readable_name(david_vs_goliath[1][0]),
"goliath": get_human_readable_name(david_vs_goliath[1][1]),
"size_difference": f"{david_vs_goliath[0][0]:.1f}B",
"wins": david_vs_goliath[0][1]
},
"comeback_king": {
"model": get_human_readable_name(comeback_king[1]),
"comeback_margin": comeback_king[0]
},
"pyrrhic_victor": {
"model": get_human_readable_name(pyrrhic_victor[1]),
"win_rate": f"{pyrrhic_victor[0]:.2%}"
}
}
return stats
if __name__ == "__main__":
stats = get_internal_stats() |