File size: 15,155 Bytes
c095e16
 
 
 
893d387
 
 
c095e16
53a3c92
 
d6f8bd2
c095e16
 
 
 
53a3c92
 
 
c095e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53a3c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f8bd2
53a3c92
 
 
 
 
 
 
 
 
 
 
 
b0ade41
 
53a3c92
b0ade41
 
53a3c92
 
 
 
 
 
 
 
 
c095e16
 
 
 
 
 
 
 
 
 
 
 
 
 
53a3c92
 
 
c095e16
 
 
 
893d387
 
79d1a94
 
 
 
 
53a3c92
0efd625
 
 
 
 
 
 
 
 
 
 
79d1a94
53a3c92
0efd625
79d1a94
 
0efd625
 
 
 
 
 
 
 
 
 
79d1a94
0efd625
 
79d1a94
0efd625
79d1a94
 
 
0efd625
 
79d1a94
 
 
0efd625
 
79d1a94
 
0efd625
 
79d1a94
 
0efd625
 
79d1a94
 
0efd625
79d1a94
 
 
 
 
0efd625
79d1a94
 
 
 
 
 
 
 
 
 
 
 
 
53a3c92
79d1a94
 
 
 
 
 
 
 
 
53a3c92
79d1a94
 
 
0efd625
79d1a94
 
 
 
 
 
 
 
53a3c92
 
 
d6f8bd2
 
 
 
 
 
b0ade41
 
 
 
 
 
 
 
 
 
 
 
 
d6f8bd2
 
 
53a3c92
 
 
 
b0ade41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53a3c92
0efd625
53a3c92
 
 
d6f8bd2
 
 
53a3c92
 
 
 
0efd625
53a3c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f8bd2
 
 
 
 
53a3c92
 
 
b0ade41
53a3c92
 
 
 
 
b0ade41
 
 
 
 
 
53a3c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276d365
53a3c92
 
 
 
d6f8bd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
from nc_py_api import Nextcloud
import json
from typing import Dict, Any
import os
import time
from datetime import datetime
import threading
import arena_config
import sys
import math
import plotly.graph_objects as go

# Initialize Nextcloud client
nc = Nextcloud(nextcloud_url=arena_config.NEXTCLOUD_URL, nc_auth_user=arena_config.NEXTCLOUD_USERNAME, nc_auth_pass=arena_config.NEXTCLOUD_PASSWORD)

# Dictionary to store ELO ratings
elo_ratings = {}

def load_leaderboard() -> Dict[str, Any]:
    try:
        file_content = nc.files.download(arena_config.NEXTCLOUD_LEADERBOARD_PATH)
        return json.loads(file_content.decode('utf-8'))
    except Exception as e:
        print(f"Error loading leaderboard: {str(e)}")
        return {}

def save_leaderboard(leaderboard_data: Dict[str, Any]) -> bool:
    try:
        json_data = json.dumps(leaderboard_data, indent=2)
        nc.files.upload(arena_config.NEXTCLOUD_LEADERBOARD_PATH, json_data.encode('utf-8'))
        return True
    except Exception as e:
        print(f"Error saving leaderboard: {str(e)}")
        return False

def get_model_size(model_name):
    for model, human_readable in arena_config.APPROVED_MODELS:
        if model == model_name:
            size = float(human_readable.split('(')[1].split('B')[0])
            return size
    return 1.0  # Default size if not found

def calculate_expected_score(rating_a, rating_b):
    return 1 / (1 + math.pow(10, (rating_b - rating_a) / 400))

def update_elo_ratings(winner, loser):
    if winner not in elo_ratings or loser not in elo_ratings:
        initialize_elo_ratings()
    
    winner_rating = elo_ratings[winner]
    loser_rating = elo_ratings[loser]
    
    expected_winner = calculate_expected_score(winner_rating, loser_rating)
    expected_loser = 1 - expected_winner
    
    winner_size = get_model_size(winner)
    loser_size = get_model_size(loser)
    max_size = max(get_model_size(model) for model, _ in arena_config.APPROVED_MODELS)
    
    k_factor = min(64, 32 * (1 + (loser_size - winner_size) / max_size))
    
    elo_ratings[winner] += k_factor * (1 - expected_winner)
    elo_ratings[loser] += k_factor * (0 - expected_loser)

def initialize_elo_ratings():
    leaderboard = load_leaderboard()
    for model, _ in arena_config.APPROVED_MODELS:
        size = get_model_size(model)
        elo_ratings[model] = 1000 + (size * 100)
    
    # Replay all battles to update ELO ratings
    for model, data in leaderboard.items():
        if model not in elo_ratings:
            elo_ratings[model] = 1000 + (get_model_size(model) * 100)
        for opponent, results in data['opponents'].items():
            if opponent not in elo_ratings:
                elo_ratings[opponent] = 1000 + (get_model_size(opponent) * 100)
            for _ in range(results['wins']):
                update_elo_ratings(model, opponent)
            for _ in range(results['losses']):
                update_elo_ratings(opponent, model)

def ensure_elo_ratings_initialized():
    if not elo_ratings:
        initialize_elo_ratings()

def update_leaderboard(winner: str, loser: str) -> Dict[str, Any]:
    leaderboard = load_leaderboard()
    
    if winner not in leaderboard:
        leaderboard[winner] = {"wins": 0, "losses": 0, "opponents": {}}
    if loser not in leaderboard:
        leaderboard[loser] = {"wins": 0, "losses": 0, "opponents": {}}
    
    leaderboard[winner]["wins"] += 1
    leaderboard[winner]["opponents"].setdefault(loser, {"wins": 0, "losses": 0})["wins"] += 1
    
    leaderboard[loser]["losses"] += 1
    leaderboard[loser]["opponents"].setdefault(winner, {"wins": 0, "losses": 0})["losses"] += 1
    
    # Update ELO ratings
    update_elo_ratings(winner, loser)
    
    save_leaderboard(leaderboard)
    return leaderboard

def get_current_leaderboard() -> Dict[str, Any]:
    return load_leaderboard()

def get_human_readable_name(model_name: str) -> str:
    model_dict = dict(arena_config.APPROVED_MODELS)
    return model_dict.get(model_name, model_name)

def get_leaderboard():
    leaderboard = load_leaderboard()
    
    # Calculate scores for each model
    for model, results in leaderboard.items():
        total_battles = results["wins"] + results["losses"]
        if total_battles > 0:
            win_rate = results["wins"] / total_battles
            results["score"] = win_rate * (1 - 1 / (total_battles + 1))
        else:
            results["score"] = 0

    # Sort results by score, then by total battles
    sorted_results = sorted(
        leaderboard.items(), 
        key=lambda x: (x[1]["score"], x[1]["wins"] + x[1]["losses"]), 
        reverse=True
    )
    # Explanation of the main leaderboard
    explanation = """
    <p style="font-size: 16px; margin-bottom: 20px;">
    This leaderboard uses a scoring system that balances win rate and total battles. The score is calculated using the formula:
    <br>
    <strong>Score = Win Rate * (1 - 1 / (Total Battles + 1))</strong>
    <br>
    This formula rewards models with higher win rates and more battles. As the number of battles increases, the score approaches the win rate.
    </p>
    """

    leaderboard_html = f"""
    {explanation}
    <style>
        .leaderboard-table {{
            width: 100%;
            border-collapse: collapse;
            font-family: Arial, sans-serif;
        }}
        .leaderboard-table th, .leaderboard-table td {{
            border: 1px solid #ddd;
            padding: 8px;
            text-align: left;
        }}
        .leaderboard-table th {{
            background-color: rgba(255, 255, 255, 0.1);
            font-weight: bold;
        }}
        .rank-column {{
            width: 60px;
            text-align: center;
        }}
        .opponent-details {{
            font-size: 0.9em;
            color: #888;
        }}
    </style>
    <table class='leaderboard-table'>
    <tr>
        <th class='rank-column'>Rank</th>
        <th>Model</th>
        <th>Score</th>
        <th>Wins</th>
        <th>Losses</th>
        <th>Win Rate</th>
        <th>Total Battles</th>
        <th>Top Rival</th>
        <th>Toughest Opponent</th>
    </tr>
    """
    
    for index, (model, results) in enumerate(sorted_results, start=1):
        total_battles = results["wins"] + results["losses"]
        win_rate = (results["wins"] / total_battles * 100) if total_battles > 0 else 0
        
        rank_display = {1: "πŸ₯‡", 2: "πŸ₯ˆ", 3: "πŸ₯‰"}.get(index, f"{index}")
        
        top_rival = max(results["opponents"].items(), key=lambda x: x[1]["wins"], default=(None, {"wins": 0}))
        top_rival_name = get_human_readable_name(top_rival[0]) if top_rival[0] else "N/A"
        top_rival_wins = top_rival[1]["wins"]
        
        toughest_opponent = max(results["opponents"].items(), key=lambda x: x[1]["losses"], default=(None, {"losses": 0}))
        toughest_opponent_name = get_human_readable_name(toughest_opponent[0]) if toughest_opponent[0] else "N/A"
        toughest_opponent_losses = toughest_opponent[1]["losses"]
        
        leaderboard_html += f"""
        <tr>
            <td class='rank-column'>{rank_display}</td>
            <td>{get_human_readable_name(model)}</td>
            <td>{results['score']:.4f}</td>
            <td>{results['wins']}</td>
            <td>{results['losses']}</td>
            <td>{win_rate:.2f}%</td>
            <td>{total_battles}</td>
            <td class='opponent-details'>{top_rival_name} (W: {top_rival_wins})</td>
            <td class='opponent-details'>{toughest_opponent_name} (L: {toughest_opponent_losses})</td>
        </tr>
        """
    leaderboard_html += "</table>"
    return leaderboard_html

def calculate_elo_impact(model):
    positive_impact = 0
    negative_impact = 0
    leaderboard = load_leaderboard()
    initial_rating = 1000 + (get_model_size(model) * 100)
    
    if model in leaderboard:
        for opponent, results in leaderboard[model]['opponents'].items():
            model_size = get_model_size(model)
            opponent_size = get_model_size(opponent)
            max_size = max(get_model_size(m) for m, _ in arena_config.APPROVED_MODELS)
            
            size_difference = (opponent_size - model_size) / max_size
            
            win_impact = 1 + max(0, size_difference)
            loss_impact = 1 + max(0, -size_difference)
            
            positive_impact += results['wins'] * win_impact
            negative_impact += results['losses'] * loss_impact
    
    return round(positive_impact), round(negative_impact), round(initial_rating)

def get_elo_leaderboard():
    ensure_elo_ratings_initialized()
    leaderboard = load_leaderboard()
    
    # Create a list of all models, including those from APPROVED_MODELS that might not be in the leaderboard yet
    all_models = set(dict(arena_config.APPROVED_MODELS).keys()) | set(leaderboard.keys())
    
    elo_data = []
    for model in all_models:
        initial_rating = 1000 + (get_model_size(model) * 100)
        current_rating = elo_ratings.get(model, initial_rating)
        
        # Calculate battle data only if the model exists in the leaderboard
        if model in leaderboard:
            wins = leaderboard[model].get('wins', 0)
            losses = leaderboard[model].get('losses', 0)
            total_battles = wins + losses
            positive_impact, negative_impact, _ = calculate_elo_impact(model)
        else:
            wins = losses = total_battles = positive_impact = negative_impact = 0
        
        elo_data.append({
            'model': model,
            'current_rating': current_rating,
            'initial_rating': initial_rating,
            'total_battles': total_battles,
            'positive_impact': positive_impact,
            'negative_impact': negative_impact
        })
    
    # Sort the data by current rating
    sorted_elo_data = sorted(elo_data, key=lambda x: x['current_rating'], reverse=True)
    
    min_initial_rating = min(data['initial_rating'] for data in elo_data)
    max_initial_rating = max(data['initial_rating'] for data in elo_data)
    
    explanation_elo = f"""
    <p style="font-size: 16px; margin-bottom: 20px;">
    This leaderboard uses a modified ELO rating system that takes into account both the performance and size of the models. 
    Initial ratings range from {round(min_initial_rating)} to {round(max_initial_rating)} points, based on model size, with larger models starting at higher ratings. 
    The "Positive Impact" score reflects the significance of wins, with higher scores for defeating larger models.
    The "Negative Impact" score indicates the significance of losses, with higher scores for losing against smaller models.
    The current ELO rating is calculated based on these impacts and the model's performance history.
    </p>
    """
    
    leaderboard_html = f"""
    {explanation_elo}
    <style>
        .elo-leaderboard-table {{
            width: 100%;
            border-collapse: collapse;
            font-family: Arial, sans-serif;
        }}
        .elo-leaderboard-table th, .elo-leaderboard-table td {{
            border: 1px solid #ddd;
            padding: 8px;
            text-align: left;
        }}
        .elo-leaderboard-table th {{
            background-color: rgba(255, 255, 255, 0.1);
            font-weight: bold;
        }}
        .rank-column {{
            width: 60px;
            text-align: center;
        }}
    </style>
    <table class='elo-leaderboard-table'>
    <tr>
        <th class='rank-column'>Rank</th>
        <th>Model</th>
        <th>Current ELO Rating</th>
        <th>Positive Impact</th>
        <th>Negative Impact</th>
        <th>Total Battles</th>
        <th>Initial Rating</th>
    </tr>
    """
    
    for index, data in enumerate(sorted_elo_data, start=1):
        rank_display = {1: "πŸ₯‡", 2: "πŸ₯ˆ", 3: "πŸ₯‰"}.get(index, f"{index}")
        
        leaderboard_html += f"""
        <tr>
            <td class='rank-column'>{rank_display}</td>
            <td>{get_human_readable_name(data['model'])}</td>
            <td><strong>{round(data['current_rating'])}</strong></td>
            <td>{data['positive_impact']}</td>
            <td>{data['negative_impact']}</td>
            <td>{data['total_battles']}</td>
            <td>{round(data['initial_rating'])}</td>
        </tr>
        """
    
    leaderboard_html += "</table>"
    return leaderboard_html

def create_backup():
    while True:
        try:
            leaderboard_data = load_leaderboard()
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            backup_file_name = f"leaderboard_backup_{timestamp}.json"
            backup_path = f"{arena_config.NEXTCLOUD_BACKUP_FOLDER}/{backup_file_name}"
            json_data = json.dumps(leaderboard_data, indent=2)
            nc.files.upload(backup_path, json_data.encode('utf-8'))
            print(f"Backup created on Nextcloud: {backup_path}")
        except Exception as e:
            print(f"Error creating backup: {e}")
        time.sleep(43200)  # Sleep for 12 HOURS

def start_backup_thread():
    backup_thread = threading.Thread(target=create_backup, daemon=True)
    backup_thread.start()

def get_leaderboard_chart():
    battle_results = get_current_leaderboard()
    
    # Calculate scores and sort results
    for model, results in battle_results.items():
        total_battles = results["wins"] + results["losses"]
        if total_battles > 0:
            win_rate = results["wins"] / total_battles
            results["score"] = win_rate * (1 - 1 / (total_battles + 1))
        else:
            results["score"] = 0
    
    sorted_results = sorted(
        battle_results.items(), 
        key=lambda x: (x[1]["score"], x[1]["wins"] + x[1]["losses"]), 
        reverse=True
    )

    models = [get_human_readable_name(model) for model, _ in sorted_results]
    wins = [results["wins"] for _, results in sorted_results]
    losses = [results["losses"] for _, results in sorted_results]
    scores = [results["score"] for _, results in sorted_results]

    fig = go.Figure()

    # Stacked Bar chart for Wins and Losses
    fig.add_trace(go.Bar(
        x=models,
        y=wins,
        name='Wins',
        marker_color='#22577a'
    ))
    fig.add_trace(go.Bar(
        x=models,
        y=losses,
        name='Losses',
        marker_color='#38a3a5'
    ))

    # Line chart for Scores
    fig.add_trace(go.Scatter(
        x=models,
        y=scores,
        name='Score',
        yaxis='y2',
        line=dict(color='#ff7f0e', width=2)
    ))

    # Update layout for full-width, increased height, and secondary y-axis
    fig.update_layout(
        title='Model Performance',
        xaxis_title='Models',
        yaxis_title='Number of Battles',
        yaxis2=dict(
            title='Score',
            overlaying='y',
            side='right'
        ),
        barmode='stack',
        height=800,
        width=1450,
        autosize=True,
        legend=dict(
            orientation='h',
            yanchor='bottom',
            y=1.02,
            xanchor='right',
            x=1
        )
    )

    return fig