Spaces:
Running
Running
File size: 15,155 Bytes
c095e16 893d387 c095e16 53a3c92 d6f8bd2 c095e16 53a3c92 c095e16 53a3c92 d6f8bd2 53a3c92 b0ade41 53a3c92 b0ade41 53a3c92 c095e16 53a3c92 c095e16 893d387 79d1a94 53a3c92 0efd625 79d1a94 53a3c92 0efd625 79d1a94 0efd625 79d1a94 0efd625 79d1a94 0efd625 79d1a94 0efd625 79d1a94 0efd625 79d1a94 0efd625 79d1a94 0efd625 79d1a94 0efd625 79d1a94 0efd625 79d1a94 53a3c92 79d1a94 53a3c92 79d1a94 0efd625 79d1a94 53a3c92 d6f8bd2 b0ade41 d6f8bd2 53a3c92 b0ade41 53a3c92 0efd625 53a3c92 d6f8bd2 53a3c92 0efd625 53a3c92 d6f8bd2 53a3c92 b0ade41 53a3c92 b0ade41 53a3c92 276d365 53a3c92 d6f8bd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
from nc_py_api import Nextcloud
import json
from typing import Dict, Any
import os
import time
from datetime import datetime
import threading
import arena_config
import sys
import math
import plotly.graph_objects as go
# Initialize Nextcloud client
nc = Nextcloud(nextcloud_url=arena_config.NEXTCLOUD_URL, nc_auth_user=arena_config.NEXTCLOUD_USERNAME, nc_auth_pass=arena_config.NEXTCLOUD_PASSWORD)
# Dictionary to store ELO ratings
elo_ratings = {}
def load_leaderboard() -> Dict[str, Any]:
try:
file_content = nc.files.download(arena_config.NEXTCLOUD_LEADERBOARD_PATH)
return json.loads(file_content.decode('utf-8'))
except Exception as e:
print(f"Error loading leaderboard: {str(e)}")
return {}
def save_leaderboard(leaderboard_data: Dict[str, Any]) -> bool:
try:
json_data = json.dumps(leaderboard_data, indent=2)
nc.files.upload(arena_config.NEXTCLOUD_LEADERBOARD_PATH, json_data.encode('utf-8'))
return True
except Exception as e:
print(f"Error saving leaderboard: {str(e)}")
return False
def get_model_size(model_name):
for model, human_readable in arena_config.APPROVED_MODELS:
if model == model_name:
size = float(human_readable.split('(')[1].split('B')[0])
return size
return 1.0 # Default size if not found
def calculate_expected_score(rating_a, rating_b):
return 1 / (1 + math.pow(10, (rating_b - rating_a) / 400))
def update_elo_ratings(winner, loser):
if winner not in elo_ratings or loser not in elo_ratings:
initialize_elo_ratings()
winner_rating = elo_ratings[winner]
loser_rating = elo_ratings[loser]
expected_winner = calculate_expected_score(winner_rating, loser_rating)
expected_loser = 1 - expected_winner
winner_size = get_model_size(winner)
loser_size = get_model_size(loser)
max_size = max(get_model_size(model) for model, _ in arena_config.APPROVED_MODELS)
k_factor = min(64, 32 * (1 + (loser_size - winner_size) / max_size))
elo_ratings[winner] += k_factor * (1 - expected_winner)
elo_ratings[loser] += k_factor * (0 - expected_loser)
def initialize_elo_ratings():
leaderboard = load_leaderboard()
for model, _ in arena_config.APPROVED_MODELS:
size = get_model_size(model)
elo_ratings[model] = 1000 + (size * 100)
# Replay all battles to update ELO ratings
for model, data in leaderboard.items():
if model not in elo_ratings:
elo_ratings[model] = 1000 + (get_model_size(model) * 100)
for opponent, results in data['opponents'].items():
if opponent not in elo_ratings:
elo_ratings[opponent] = 1000 + (get_model_size(opponent) * 100)
for _ in range(results['wins']):
update_elo_ratings(model, opponent)
for _ in range(results['losses']):
update_elo_ratings(opponent, model)
def ensure_elo_ratings_initialized():
if not elo_ratings:
initialize_elo_ratings()
def update_leaderboard(winner: str, loser: str) -> Dict[str, Any]:
leaderboard = load_leaderboard()
if winner not in leaderboard:
leaderboard[winner] = {"wins": 0, "losses": 0, "opponents": {}}
if loser not in leaderboard:
leaderboard[loser] = {"wins": 0, "losses": 0, "opponents": {}}
leaderboard[winner]["wins"] += 1
leaderboard[winner]["opponents"].setdefault(loser, {"wins": 0, "losses": 0})["wins"] += 1
leaderboard[loser]["losses"] += 1
leaderboard[loser]["opponents"].setdefault(winner, {"wins": 0, "losses": 0})["losses"] += 1
# Update ELO ratings
update_elo_ratings(winner, loser)
save_leaderboard(leaderboard)
return leaderboard
def get_current_leaderboard() -> Dict[str, Any]:
return load_leaderboard()
def get_human_readable_name(model_name: str) -> str:
model_dict = dict(arena_config.APPROVED_MODELS)
return model_dict.get(model_name, model_name)
def get_leaderboard():
leaderboard = load_leaderboard()
# Calculate scores for each model
for model, results in leaderboard.items():
total_battles = results["wins"] + results["losses"]
if total_battles > 0:
win_rate = results["wins"] / total_battles
results["score"] = win_rate * (1 - 1 / (total_battles + 1))
else:
results["score"] = 0
# Sort results by score, then by total battles
sorted_results = sorted(
leaderboard.items(),
key=lambda x: (x[1]["score"], x[1]["wins"] + x[1]["losses"]),
reverse=True
)
# Explanation of the main leaderboard
explanation = """
<p style="font-size: 16px; margin-bottom: 20px;">
This leaderboard uses a scoring system that balances win rate and total battles. The score is calculated using the formula:
<br>
<strong>Score = Win Rate * (1 - 1 / (Total Battles + 1))</strong>
<br>
This formula rewards models with higher win rates and more battles. As the number of battles increases, the score approaches the win rate.
</p>
"""
leaderboard_html = f"""
{explanation}
<style>
.leaderboard-table {{
width: 100%;
border-collapse: collapse;
font-family: Arial, sans-serif;
}}
.leaderboard-table th, .leaderboard-table td {{
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}}
.leaderboard-table th {{
background-color: rgba(255, 255, 255, 0.1);
font-weight: bold;
}}
.rank-column {{
width: 60px;
text-align: center;
}}
.opponent-details {{
font-size: 0.9em;
color: #888;
}}
</style>
<table class='leaderboard-table'>
<tr>
<th class='rank-column'>Rank</th>
<th>Model</th>
<th>Score</th>
<th>Wins</th>
<th>Losses</th>
<th>Win Rate</th>
<th>Total Battles</th>
<th>Top Rival</th>
<th>Toughest Opponent</th>
</tr>
"""
for index, (model, results) in enumerate(sorted_results, start=1):
total_battles = results["wins"] + results["losses"]
win_rate = (results["wins"] / total_battles * 100) if total_battles > 0 else 0
rank_display = {1: "π₯", 2: "π₯", 3: "π₯"}.get(index, f"{index}")
top_rival = max(results["opponents"].items(), key=lambda x: x[1]["wins"], default=(None, {"wins": 0}))
top_rival_name = get_human_readable_name(top_rival[0]) if top_rival[0] else "N/A"
top_rival_wins = top_rival[1]["wins"]
toughest_opponent = max(results["opponents"].items(), key=lambda x: x[1]["losses"], default=(None, {"losses": 0}))
toughest_opponent_name = get_human_readable_name(toughest_opponent[0]) if toughest_opponent[0] else "N/A"
toughest_opponent_losses = toughest_opponent[1]["losses"]
leaderboard_html += f"""
<tr>
<td class='rank-column'>{rank_display}</td>
<td>{get_human_readable_name(model)}</td>
<td>{results['score']:.4f}</td>
<td>{results['wins']}</td>
<td>{results['losses']}</td>
<td>{win_rate:.2f}%</td>
<td>{total_battles}</td>
<td class='opponent-details'>{top_rival_name} (W: {top_rival_wins})</td>
<td class='opponent-details'>{toughest_opponent_name} (L: {toughest_opponent_losses})</td>
</tr>
"""
leaderboard_html += "</table>"
return leaderboard_html
def calculate_elo_impact(model):
positive_impact = 0
negative_impact = 0
leaderboard = load_leaderboard()
initial_rating = 1000 + (get_model_size(model) * 100)
if model in leaderboard:
for opponent, results in leaderboard[model]['opponents'].items():
model_size = get_model_size(model)
opponent_size = get_model_size(opponent)
max_size = max(get_model_size(m) for m, _ in arena_config.APPROVED_MODELS)
size_difference = (opponent_size - model_size) / max_size
win_impact = 1 + max(0, size_difference)
loss_impact = 1 + max(0, -size_difference)
positive_impact += results['wins'] * win_impact
negative_impact += results['losses'] * loss_impact
return round(positive_impact), round(negative_impact), round(initial_rating)
def get_elo_leaderboard():
ensure_elo_ratings_initialized()
leaderboard = load_leaderboard()
# Create a list of all models, including those from APPROVED_MODELS that might not be in the leaderboard yet
all_models = set(dict(arena_config.APPROVED_MODELS).keys()) | set(leaderboard.keys())
elo_data = []
for model in all_models:
initial_rating = 1000 + (get_model_size(model) * 100)
current_rating = elo_ratings.get(model, initial_rating)
# Calculate battle data only if the model exists in the leaderboard
if model in leaderboard:
wins = leaderboard[model].get('wins', 0)
losses = leaderboard[model].get('losses', 0)
total_battles = wins + losses
positive_impact, negative_impact, _ = calculate_elo_impact(model)
else:
wins = losses = total_battles = positive_impact = negative_impact = 0
elo_data.append({
'model': model,
'current_rating': current_rating,
'initial_rating': initial_rating,
'total_battles': total_battles,
'positive_impact': positive_impact,
'negative_impact': negative_impact
})
# Sort the data by current rating
sorted_elo_data = sorted(elo_data, key=lambda x: x['current_rating'], reverse=True)
min_initial_rating = min(data['initial_rating'] for data in elo_data)
max_initial_rating = max(data['initial_rating'] for data in elo_data)
explanation_elo = f"""
<p style="font-size: 16px; margin-bottom: 20px;">
This leaderboard uses a modified ELO rating system that takes into account both the performance and size of the models.
Initial ratings range from {round(min_initial_rating)} to {round(max_initial_rating)} points, based on model size, with larger models starting at higher ratings.
The "Positive Impact" score reflects the significance of wins, with higher scores for defeating larger models.
The "Negative Impact" score indicates the significance of losses, with higher scores for losing against smaller models.
The current ELO rating is calculated based on these impacts and the model's performance history.
</p>
"""
leaderboard_html = f"""
{explanation_elo}
<style>
.elo-leaderboard-table {{
width: 100%;
border-collapse: collapse;
font-family: Arial, sans-serif;
}}
.elo-leaderboard-table th, .elo-leaderboard-table td {{
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}}
.elo-leaderboard-table th {{
background-color: rgba(255, 255, 255, 0.1);
font-weight: bold;
}}
.rank-column {{
width: 60px;
text-align: center;
}}
</style>
<table class='elo-leaderboard-table'>
<tr>
<th class='rank-column'>Rank</th>
<th>Model</th>
<th>Current ELO Rating</th>
<th>Positive Impact</th>
<th>Negative Impact</th>
<th>Total Battles</th>
<th>Initial Rating</th>
</tr>
"""
for index, data in enumerate(sorted_elo_data, start=1):
rank_display = {1: "π₯", 2: "π₯", 3: "π₯"}.get(index, f"{index}")
leaderboard_html += f"""
<tr>
<td class='rank-column'>{rank_display}</td>
<td>{get_human_readable_name(data['model'])}</td>
<td><strong>{round(data['current_rating'])}</strong></td>
<td>{data['positive_impact']}</td>
<td>{data['negative_impact']}</td>
<td>{data['total_battles']}</td>
<td>{round(data['initial_rating'])}</td>
</tr>
"""
leaderboard_html += "</table>"
return leaderboard_html
def create_backup():
while True:
try:
leaderboard_data = load_leaderboard()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
backup_file_name = f"leaderboard_backup_{timestamp}.json"
backup_path = f"{arena_config.NEXTCLOUD_BACKUP_FOLDER}/{backup_file_name}"
json_data = json.dumps(leaderboard_data, indent=2)
nc.files.upload(backup_path, json_data.encode('utf-8'))
print(f"Backup created on Nextcloud: {backup_path}")
except Exception as e:
print(f"Error creating backup: {e}")
time.sleep(43200) # Sleep for 12 HOURS
def start_backup_thread():
backup_thread = threading.Thread(target=create_backup, daemon=True)
backup_thread.start()
def get_leaderboard_chart():
battle_results = get_current_leaderboard()
# Calculate scores and sort results
for model, results in battle_results.items():
total_battles = results["wins"] + results["losses"]
if total_battles > 0:
win_rate = results["wins"] / total_battles
results["score"] = win_rate * (1 - 1 / (total_battles + 1))
else:
results["score"] = 0
sorted_results = sorted(
battle_results.items(),
key=lambda x: (x[1]["score"], x[1]["wins"] + x[1]["losses"]),
reverse=True
)
models = [get_human_readable_name(model) for model, _ in sorted_results]
wins = [results["wins"] for _, results in sorted_results]
losses = [results["losses"] for _, results in sorted_results]
scores = [results["score"] for _, results in sorted_results]
fig = go.Figure()
# Stacked Bar chart for Wins and Losses
fig.add_trace(go.Bar(
x=models,
y=wins,
name='Wins',
marker_color='#22577a'
))
fig.add_trace(go.Bar(
x=models,
y=losses,
name='Losses',
marker_color='#38a3a5'
))
# Line chart for Scores
fig.add_trace(go.Scatter(
x=models,
y=scores,
name='Score',
yaxis='y2',
line=dict(color='#ff7f0e', width=2)
))
# Update layout for full-width, increased height, and secondary y-axis
fig.update_layout(
title='Model Performance',
xaxis_title='Models',
yaxis_title='Number of Battles',
yaxis2=dict(
title='Score',
overlaying='y',
side='right'
),
barmode='stack',
height=800,
width=1450,
autosize=True,
legend=dict(
orientation='h',
yanchor='bottom',
y=1.02,
xanchor='right',
x=1
)
)
return fig
|