File size: 21,316 Bytes
78b8f5f
c5ba729
72164ba
 
c5ba729
 
 
 
 
94d37e3
9933c91
9e8fb21
72164ba
 
 
78b8f5f
72164ba
 
 
 
890b9fd
a907317
72164ba
 
 
c5ba729
 
72164ba
 
c5ba729
 
 
 
890b9fd
 
 
ac592b3
890b9fd
 
 
 
 
 
 
 
 
 
ac592b3
890b9fd
 
 
 
 
 
 
 
ac592b3
890b9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b951b8
890b9fd
 
 
 
 
 
 
 
 
 
 
 
ac592b3
 
890b9fd
 
 
 
 
 
 
 
 
 
 
ac592b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a907317
bdec242
 
 
 
 
 
 
 
 
 
0ad49ae
 
 
 
 
bdec242
 
 
 
 
a907317
 
9933c91
 
a907317
c5ba729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72164ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ba729
 
 
 
 
72164ba
 
 
c5ba729
5975e3b
c5ba729
 
 
72164ba
 
c5ba729
 
 
 
 
72164ba
 
c5ba729
 
 
 
 
72164ba
 
c5ba729
 
 
 
 
72164ba
 
c5ba729
 
 
 
 
72164ba
 
 
 
 
5975e3b
 
 
 
 
72164ba
 
7511f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72164ba
c5ba729
890b9fd
ac592b3
72164ba
 
 
 
 
 
 
 
97ebe70
72164ba
 
 
 
b572397
8e6bca2
72164ba
 
c5ba729
 
 
 
9933c91
c5ba729
 
 
 
 
0ad49ae
c5ba729
 
 
 
 
 
 
 
 
 
 
8e6bca2
c5ba729
8e6bca2
 
 
 
 
c5ba729
43230a0
bdec242
 
 
 
97ebe70
a907317
bdec242
9933c91
 
 
 
0ad49ae
 
bdec242
 
 
 
 
 
 
94d37e3
 
 
 
bdec242
 
 
 
 
 
 
 
5db56dd
bdec242
 
0ad49ae
9e8fb21
c5ba729
 
 
bdec242
c5ba729
 
72164ba
 
cc3a0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72164ba
c5ba729
890b9fd
c5ba729
72164ba
c5ba729
890b9fd
72164ba
 
890b9fd
72164ba
 
 
 
 
c5ba729
72164ba
c5ba729
72164ba
c5ba729
72164ba
c5ba729
72164ba
 
 
 
 
c5ba729
72164ba
c5ba729
72164ba
c5ba729
72164ba
 
 
 
 
c5ba729
 
890b9fd
c5ba729
 
 
72164ba
 
 
 
 
c5ba729
72164ba
 
 
c5ba729
 
72164ba
 
 
 
c5ba729
 
 
 
72164ba
 
c5ba729
b572397
 
 
 
890b9fd
 
 
 
 
 
 
ac592b3
 
 
 
 
 
72164ba
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
c5ba729
72164ba
97ebe70
c5ba729
72164ba
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
43230a0
 
 
 
 
 
 
c5ba729
72164ba
c5ba729
 
 
72164ba
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
9933c91
 
72164ba
 
 
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
 
 
 
 
 
 
 
 
72164ba
 
c5ba729
72164ba
8e6bca2
72164ba
c5ba729
8e6bca2
72164ba
 
c5ba729
72164ba
c5ba729
72164ba
 
cc3a0a5
 
72164ba
 
 
 
 
 
 
 
 
cc3a0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72164ba
 
 
c5ba729
890b9fd
ac592b3
72164ba
 
 
 
 
 
 
 
97ebe70
43230a0
 
 
 
97ebe70
72164ba
 
 
 
b572397
8e6bca2
72164ba
 
 
 
b572397
 
 
 
 
 
 
5975e3b
 
 
 
 
 
 
72164ba
 
 
c5ba729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72164ba
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

import os
import random
import numpy as np
import gradio as gr
import base64
from io import BytesIO
import PIL.Image
from typing import Tuple
from novita_client import NovitaClient, InstantIDControlnetUnit, InstantIDLora
from time import time
import datetime

from style_template import styles



# global variable
MAX_SEED = np.iinfo(np.int32).max
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = 'Watercolor'
DEFAULT_MODEL_NAME = 'sdxlUnstableDiffusers_v8HEAVENSWRATH_133813'
enable_lcm_arg = False

# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'

# controlnet-pose/canny/depth
controlnet_pose_model = 'thibaud/controlnet-openpose-sdxl-1.0'
controlnet_canny_model = 'diffusers/controlnet-canny-sdxl-1.0'
controlnet_depth_model = 'diffusers/controlnet-depth-sdxl-1.0-small'

SDXL_MODELS = [
	"albedobaseXL_v04_130099",
	"altxl_v60_146691",
	"animagineXLV3_v30_231047",
	"animeArtDiffusionXL_alpha2_91872",
	"animeArtDiffusionXL_alpha3_93120",
	"animeIllustDiffusion_v04_117809",
	"breakdomainxl_V05g_124265",
	"brixlAMustInYour_v40Dagobah_145992",
	"cinemaxAlphaSDXLCinema_alpha1_107473",
	"cineroXLPhotomatic_v12aPHENO_137703",
	"clearhungAnimeXL_v10_117716",
	"copaxTimelessxlSDXL1_colorfulV2_100729",
	"counterfeitxl_v10_108721",
	"counterfeitxl__98184",
	"crystalClearXL_ccxl_97637",
	"dreamshaperXL09Alpha_alpha2Xl10_91562",
	"dynavisionXLAllInOneStylized_alpha036FP16Bakedvae_99980",
	"dynavisionXLAllInOneStylized_beta0411Bakedvae_109970",
	"dynavisionXLAllInOneStylized_release0534bakedvae_129001",
	"fenrisxl_145_134980",
	"foddaxlPhotorealism_v45_122788",
	"formulaxl_v10_104889",
	"juggernautXL_v8Rundiffusion_227002",
	"juggernautXL_version2_113240",
	"juggernautXL_version5_126522",
	"kohakuXL_alpha7_111843",
	"LahMysteriousSDXL_v40_122478",
	"leosamsHelloworldSDXLModel_helloworldSDXL10_112178",
	"leosamsHelloworldSDXL_helloworldSDXL50_268813",
	"mbbxlUltimate_v10RC_94686",
	"moefusionSDXL_v10_114018",
	"nightvisionXLPhotorealisticPortrait_beta0681Bakedvae_108833",
	"nightvisionXLPhotorealisticPortrait_beta0702Bakedvae_113098",
	"nightvisionXLPhotorealisticPortrait_release0770Bakedvae_154525",
	"novaPrimeXL_v10_107899",
	"pixelwave_v10_117722",
	"protovisionXLHighFidelity3D_beta0520Bakedvae_106612",
	"protovisionXLHighFidelity3D_release0620Bakedvae_131308",
	"protovisionXLHighFidelity3D_release0630Bakedvae_154359",
	"protovisionXLHighFidelity3D_releaseV660Bakedvae_207131",
	"realismEngineSDXL_v05b_131513",
	"realismEngineSDXL_v10_136287",
	"realisticStockPhoto_v10_115618",
	"RealitiesEdgeXL_4_122673",
	"realvisxlV20_v20Bakedvae_129156",
	"riotDiffusionXL_v20_139293",
	"roxl_v10_109354",
	"sdxlNijiSpecial_sdxlNijiSE_115638",
	"sdxlNijiV3_sdxlNijiV3_104571",
	"sdxlNijiV51_sdxlNijiV51_112807",
	"sdxlUnstableDiffusers_v8HEAVENSWRATH_133813",
	"sdxlYamersAnimeUltra_yamersAnimeV3_121537",
	"sd_xl_base_0.9",
	"sd_xl_base_1.0",
	"shikianimexl_v10_93788",
	"theTalosProject_v10_117893",
	"thinkdiffusionxl_v10_145931",
	"voidnoisecorexl_r1486_150780",
	"wlopArienwlopstylexl_v10_101973",
	"wlopSTYLEXL_v2_126171",
	"xl13AsmodeusSFWNSFW_v22BakedVAE_111954",
	"xxmix9realisticsdxl_v10_123235",
	"zavychromaxl_b2_103298",
]

LORA_MODELS = [
	"DI_belle_delphine_sdxl_v1_93586",
	#"NsfwPovAllInOneLoraSdxl-000009MINI_120545",
	"NsfwPovAllInOneLoraSdxl-000009_120561",
	"acidzlime-sdxl_154149",
	"add-detail-xl_99264",
	"bwporcelaincd_xl-000007_124344",
	"concept_pov_dt_xl2-000020_119643",
	"epoxy_skull-sdxl_153213",
	"landscape-painting-sdxl_v2_111037",
	"polyhedron_all_sdxl-000004_110557",
	"ral-beer-sdxl_235173",
	"ral-wtchz-sdxl_233487",
	"sdxl_cute_social_comic-000002_107980",
	"sdxl_glass_136034",
	"sdxl_lightning_8step_lora_290441",
	"sdxl_offset_example_v10_113006",
	"sdxl_wrong_lora",
	"xl_more_art-full_v1_113467",
	"xl_yoshiaki_kawajiri_v1r64_126468",
]


CONTROLNET_DICT = dict(
	pose=InstantIDControlnetUnit(
		model_name='controlnet-openpose-sdxl-1.0',
		strength=1,
		preprocessor='openpose',
	),
	canny=InstantIDControlnetUnit(
		model_name='controlnet-canny-sdxl-1.0',
		strength=1,
		preprocessor='canny',
	),
	depth=InstantIDControlnetUnit(
		model_name='controlnet-depth-sdxl-1.0',
		strength=1,
		preprocessor='depth',
	),
	lineart=InstantIDControlnetUnit(
		model_name='controlnet-softedge-sdxl-1.0',
		strength=1,
		preprocessor='lineart',
	),
)

last_check = 0



def get_novita_client (novita_key):
	client = NovitaClient(novita_key, os.getenv('NOVITA_API_URI', None))
	return client


get_local_storage = '''
	function () {
		globalThis.setStorage = (key, value)=>{
			localStorage.setItem(key, JSON.stringify(value))
		}
		globalThis.getStorage = (key, value)=>{
			return JSON.parse(localStorage.getItem(key))
		}

		const novita_key = getStorage("novita_key")
		return [novita_key];
	}
'''


def toggle_lcm_ui (value):
	if value:
		return (
			gr.update(minimum=0, maximum=100, step=1, value=5),
			gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5),
		)
	else:
		return (
			gr.update(minimum=5, maximum=100, step=1, value=30),
			gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5),
		)


def randomize_seed_fn (seed: int, randomize_seed: bool) -> int:
	if randomize_seed:
		seed = random.randint(0, MAX_SEED)
	return seed


def remove_tips ():
	return gr.update(visible=False)


def apply_style (style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
	p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
	return p.replace("{prompt}", positive), n + " " + negative


def get_example ():
	case = [
		[
			'./examples/yann-lecun_resize.jpg',
			None,
			'a man',
			'Spring Festival',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
		],
		[
			'./examples/musk_resize.jpeg',
			'./examples/poses/pose2.jpg',
			'a man flying in the sky in Mars',
			'Mars',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
		],
		[
			'./examples/sam_resize.png',
			'./examples/poses/pose4.jpg',
			'a man doing a silly pose wearing a suite',
			'Jungle',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree',
		],
		[
			'./examples/schmidhuber_resize.png',
			'./examples/poses/pose3.jpg',
			'a man sit on a chair',
			'Neon',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
		],
		[
			'./examples/kaifu_resize.png',
			'./examples/poses/pose.jpg',
			'a man',
			'Vibrant Color',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
		],
	]
	return case


def load_example (face_file, pose_file, prompt, style, negative_prompt):
	name = os.path.basename(face_file).split('_')[0]
	image = PIL.Image.open(open(f'./examples/generated/{name}.jpg', 'rb'))

	return image, gr.update(visible=True)


upload_depot = {}

def upload_assets_with_cache (client, paths):
	global upload_depot

	pending_paths = [path for path in paths if not path in upload_depot]
	if pending_paths:
		print('uploading images:', pending_paths)
	for key, value in zip(pending_paths, client.upload_assets(pending_paths)):
		upload_depot[key] = value

	return [upload_depot[path] for path in paths]



def generate_image (
	novita_key1,
	model_name,
	lora_selection,
	face_image_path,
	pose_image_path,
	prompt,
	negative_prompt,
	style_name,
	num_steps,
	identitynet_strength_ratio,
	adapter_strength_ratio,
	controlnet_strength_1, controlnet_strength_2, controlnet_strength_3, controlnet_strength_4,
	controlnet_selection,
	guidance_scale,
	seed,
	scheduler,
	#enable_LCM,
	#enhance_face_region,
	progress=gr.Progress(track_tqdm=True),
):
	if face_image_path is None:
		raise gr.Error(f'Cannot find any input face image! Please refer to step 1️⃣')

	#print('novita_key:', novita_key1)
	#print('face_image_path:', face_image_path)
	if not novita_key1:
		raise gr.Error(f'Please input your Novita Key!')
	try:
		client = get_novita_client(novita_key1)
		prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
		prompt = prompt[:1024] or ' '
		#print('prompt:', prompt)
		#print('negative_prompt:', negative_prompt)
		#print('seed:', seed)
		#print('identitynet_strength_ratio:', identitynet_strength_ratio)
		#print('adapter_strength_ratio:', adapter_strength_ratio)
		#print('scheduler:', scheduler)
		#print('guidance_scale:', guidance_scale)
		#print('num_steps:', num_steps)

		ref_image_path = pose_image_path if pose_image_path else face_image_path
		ref_image = PIL.Image.open(ref_image_path)

		width, height = ref_image.size
		large_edge = max(width, height)
		if large_edge < 1024:
			scaling = 1024 / large_edge
			width = int(width * scaling)
			height = int(height * scaling)

		(
			CONTROLNET_DICT['pose'].strength,
			CONTROLNET_DICT['canny'].strength,
			CONTROLNET_DICT['depth'].strength,
			CONTROLNET_DICT['lineart'].strength,
		) = [controlnet_strength_1, controlnet_strength_2, controlnet_strength_3, controlnet_strength_4]

		def progress_ (x):
			global last_check
			t = time()
			if t > last_check + 5:
				last_check = t
				print('progress:', t, x.task.status)

		res = client.instant_id(
			model_name=f'{model_name}.safetensors',
			face_images=[face_image_path],
			ref_images=[ref_image_path],
			prompt=prompt,
			negative_prompt=negative_prompt,
			controlnets=[CONTROLNET_DICT[name] for name in controlnet_selection if name in CONTROLNET_DICT],
			loras=[InstantIDLora(
				model_name=f'{name}.safetensors',
				strength=1,
			) for name in lora_selection],
			steps=num_steps,
			seed=seed,
			guidance_scale=guidance_scale,
			sampler_name=scheduler,
			id_strength=identitynet_strength_ratio,
			adapter_strength=adapter_strength_ratio,
			width=width,
			height=height,
			response_image_type='jpeg',
			callback=progress_,
		)

		print('task_id:', datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), res.task.task_id)
	except Exception as e:
		raise gr.Error(f'Error: {e}')

	image = PIL.Image.open(BytesIO(base64.b64decode(res.images_encoded[0])))

	return image, gr.update(visible=True)


def get_payload (
	model_name,
	lora_selection,
	face_image_path,
	pose_image_path,
	prompt,
	negative_prompt,
	style_name,
	num_steps,
	identitynet_strength_ratio,
	adapter_strength_ratio,
	controlnet_strength_1, controlnet_strength_2, controlnet_strength_3, controlnet_strength_4,
	controlnet_selection,
	guidance_scale,
	seed,
	scheduler,
):
	prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)

	ref_image_path = pose_image_path if pose_image_path else face_image_path
	ref_image = PIL.Image.open(ref_image_path)

	width, height = ref_image.size
	large_edge = max(width, height)
	if large_edge < 1024:
		scaling = 1024 / large_edge
		width = int(width * scaling)
		height = int(height * scaling)

	(
		CONTROLNET_DICT['pose'].strength,
		CONTROLNET_DICT['canny'].strength,
		CONTROLNET_DICT['depth'].strength,
		CONTROLNET_DICT['lineart'].strength,
	) = [controlnet_strength_1, controlnet_strength_2, controlnet_strength_3, controlnet_strength_4]

	return {
		'extra': {
			'response_image_type': 'jpeg',
		},
		'model_name': f'{model_name}.safetensors',
		'face_image_assets_ids': "[assets_ids of id image, please manually upload to novita.ai]",
		'ref_image_assets_ids': "[assets_ids of reference image, please manually upload to novita.ai]",
		'prompt': prompt,
		'negative_prompt': negative_prompt,
		'controlnet': {
			'units': [CONTROLNET_DICT[name] for name in controlnet_selection if name in CONTROLNET_DICT],
		},
		'loras': [dict(
			model_name=f'{name}.safetensors',
			strength=1,
		) for name in lora_selection],
		'image_num': 1,
		'steps': num_steps,
		'seed': seed,
		'guidance_scale': guidance_scale,
		'sampler_name': scheduler,
		'id_strength': identitynet_strength_ratio,
		'adapter_strength': adapter_strength_ratio,
		'width': width,
		'height': height,
	}


# Description
title = r'''
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds (via Novita)</h1>
'''

description = r'''
<a href='https://github.com/InstantID/InstantID' target="_blank"><b>InstantID</b></a> demo via <a href="https://novita.ai/" target="_blank"><b>Novita API</b></a>.<br>

How to use:<br>
0. Input your <a href="https://novita.ai/dashboard/key" target="_blank"><b>Novita API Key</b></a>.
1. Upload an image with a face. For images with multiple faces, we will only detect the largest face. Ensure the face is not too small and is clearly visible without significant obstructions or blurring.
2. (Optional) You can upload another image as a reference for the face pose. If you don't, we will use the first detected face image to extract facial landmarks. If you use a cropped face at step 1, it is recommended to upload it to define a new face pose.
3. (Optional) You can select multiple ControlNet models to control the generation process. The default is to use the IdentityNet only. The ControlNet models include pose skeleton, canny, and depth. You can adjust the strength of each ControlNet model to control the generation process.
4. Enter a text prompt, as done in normal text-to-image models.
5. Click the <b>Submit</b> button to begin customization.
6. Share your customized photo with your friends and enjoy! 😊'''

article = r'''
---
'''

tips = r'''
### Usage tips of InstantID
1. If you're not satisfied with the similarity, try increasing the weight of "IdentityNet Strength" and "Adapter Strength."	
2. If you feel that the saturation is too high, first decrease the Adapter strength. If it remains too high, then decrease the IdentityNet strength.
3. If you find that text control is not as expected, decrease Adapter strength.
4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model.
'''

css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
	# description
	gr.Markdown(title)
	gr.Markdown(description)

	with gr.Row():
		with gr.Column(scale=1):
			novita_key = gr.Textbox(value='', label='Novita.AI API KEY', placeholder='novita.ai api key', type='password')
		with gr.Column(scale=1):
			user_balance = gr.Textbox(label='User Balance', value='0.0')

	with gr.Row():
		with gr.Column():
			with gr.Row(equal_height=True):
				# upload face image
				face_file = gr.Image(
					label='Upload a photo of your face', type='filepath'
				)
				# optional: upload a reference pose image
				pose_file = gr.Image(
					label='Upload a reference pose image (Optional)',
					type='filepath',
				)

			# prompt
			prompt = gr.Textbox(
				label='Prompt',
				info='Give simple prompt is enough to achieve good face fidelity',
				placeholder='A photo of a person',
				value='',
			)

			submit = gr.Button('Submit', variant='primary')
			#enable_LCM = gr.Checkbox(
			#	label='Enable Fast Inference with LCM', value=enable_lcm_arg,
			#	info='LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces',
			#)

			model_name = gr.Dropdown(
				label='Base model',
				choices=SDXL_MODELS,
				value=DEFAULT_MODEL_NAME,
			)

			with gr.Accordion('Lora', open=False):
				lora_selection = gr.CheckboxGroup(
					LORA_MODELS, value=[],
					info='Try lora models mix in generation'
				)

			style = gr.Dropdown(
				label='Style template',
				choices=STYLE_NAMES,
				value=DEFAULT_STYLE_NAME,
			)

			# strength
			identitynet_strength_ratio = gr.Slider(
				label='IdentityNet strength (for fidelity)',
				minimum=0,
				maximum=1.5,
				step=0.05,
				value=0.80,
			)
			adapter_strength_ratio = gr.Slider(
				label='Image adapter strength (for detail)',
				minimum=0,
				maximum=1.5,
				step=0.05,
				value=0.80,
			)
			with gr.Accordion('Controlnet'):
				controlnet_selection = gr.CheckboxGroup(
					CONTROLNET_DICT.keys(), label='Controlnet', value=['pose'],
					info='Use pose for skeleton inference, canny for edge detection, and depth for depth map estimation. You can try all three to control the generation process'
				)
				pose_strength = gr.Slider(
					label='Pose strength',
					minimum=0,
					maximum=1.5,
					step=0.05,
					value=0.40,
				)
				canny_strength = gr.Slider(
					label='Canny strength',
					minimum=0,
					maximum=1.5,
					step=0.05,
					value=0.40,
				)
				depth_strength = gr.Slider(
					label='Depth strength',
					minimum=0,
					maximum=1.5,
					step=0.05,
					value=0.40,
				)
				lineart_strength = gr.Slider(
					label='Lineart strength',
					minimum=0,
					maximum=1.5,
					step=0.05,
					value=0.40,
				)
			with gr.Accordion(open=False, label='Advanced Options'):
				negative_prompt = gr.Textbox(
					label='Negative Prompt',
					placeholder='low quality',
					value='(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
				)
				num_steps = gr.Slider(
					label='Number of sample steps',
					minimum=1,
					maximum=100,
					step=1,
					value=5 if enable_lcm_arg else 30,
				)
				guidance_scale = gr.Slider(
					label='Guidance scale',
					minimum=1.,
					maximum=30.0,
					step=0.1,
					value=0.0 if enable_lcm_arg else 5.0,
				)
				seed = gr.Slider(
					label='Seed',
					minimum=0,
					maximum=MAX_SEED,
					step=1,
					value=42,
				)
				schedulers = [
					'Euler',
					'Euler a',
					'Heun',
					'DPM++ SDE',
					'DPM++ SDE Karras',
					'DPM2',
					'DPM2 Karras',
					'DPM2 a',
					'DPM2 a Karras',
				]
				scheduler = gr.Dropdown(
					label='Schedulers',
					choices=schedulers,
					value='Euler',
				)
				randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
				#enhance_face_region = gr.Checkbox(label='Enhance non-face region', value=True)

		with gr.Column(scale=1):
			gallery = gr.Image(label='Generated Images')
			usage_tips = gr.Markdown(
				label='InstantID Usage Tips', value=tips, visible=False
			)

			api_payload = gr.JSON(label="Novita API Payload, POST /v3/async/instant-id")

		submit.click(
			fn=remove_tips,
			outputs=usage_tips,
		).then(
			fn=randomize_seed_fn,
			inputs=[seed, randomize_seed],
			outputs=seed,
			queue=False,
			api_name=False,
		).then(
			fn=get_payload,
			inputs=[
				model_name,
				lora_selection,
				face_file,
				pose_file,
				prompt,
				negative_prompt,
				style,
				num_steps,
				identitynet_strength_ratio,
				adapter_strength_ratio,
				#[
					pose_strength,
					canny_strength,
					depth_strength,
					lineart_strength,
				#],
				controlnet_selection,
				guidance_scale,
				seed,
				scheduler,
			],
			outputs=api_payload,
		).then(
			fn=generate_image,
			inputs=[
				novita_key,
				model_name,
				lora_selection,
				face_file,
				pose_file,
				prompt,
				negative_prompt,
				style,
				num_steps,
				identitynet_strength_ratio,
				adapter_strength_ratio,
				#[
					pose_strength,
					canny_strength,
					depth_strength,
					lineart_strength,
				#],
				controlnet_selection,
				guidance_scale,
				seed,
				scheduler,
				#enable_LCM,
				#enhance_face_region,
			],
			outputs=[gallery, usage_tips],
		)

		#enable_LCM.input(
		#	fn=toggle_lcm_ui,
		#	inputs=[enable_LCM],
		#	outputs=[num_steps, guidance_scale],
		#	queue=False,
		#)

	gr.Examples(
		examples=get_example(),
		inputs=[face_file, pose_file, prompt, style, negative_prompt],
		fn=load_example,
		outputs=[gallery, usage_tips],
		cache_examples=True,
	)

	gr.Markdown(article)

	def onload(novita_key):
		if novita_key is None or novita_key == '':
			return novita_key, f'$ UNKNOWN', gr.update(visible=False)
		try:
			user_info_json = get_novita_client(novita_key).user_info()
		except Exception as e:
			return novita_key, f'$ UNKNOWN'

		return novita_key, f'$ {user_info_json.credit_balance / 100 / 100:.2f}'

	novita_key.change(onload, inputs=novita_key, outputs=[novita_key, user_balance], js='v=>{ setStorage("novita_key", v); return [v]; }')

	demo.load(
		inputs=[novita_key],
		outputs=[novita_key, user_balance],
		fn=onload,
		js=get_local_storage,
	)


demo.queue(api_open=False)
demo.launch()