Spaces:
Runtime error
Runtime error
File size: 11,092 Bytes
b6f5818 cf26d89 b6f5818 d3bd47e 649ad85 b6f5818 dda3162 b6f5818 999f298 b6f5818 d904dbe 9f3f247 b6f5818 677815b ef1d866 b6f5818 20a5db2 b6f5818 d904dbe b6f5818 3d6dac6 b6f5818 3d6dac6 b6f5818 3d6dac6 b6f5818 3d6dac6 b6f5818 8d32b88 b6f5818 8d32b88 b6f5818 8d32b88 b6f5818 8d32b88 b6f5818 8d32b88 b6f5818 cf26d89 6065850 8d32b88 b6f5818 20a5db2 b6f5818 b658f7b b6f5818 8117102 b6f5818 b2e8964 b6f5818 d904dbe b6f5818 d904dbe b6f5818 42908d9 b6f5818 f55f742 cf057a0 b027f26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import tempfile
from share_btn import community_icon_html, loading_icon_html, share_js, save_js
import huggingface_hub
import gradio as gr
from gill import utils
from gill import models
import matplotlib.pyplot as plt
from PIL import Image
import torch
import numpy as np
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
css = """
#chatbot { min-height: 300px; }
#save-btn {
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
}
#save-btn:hover {
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
}
#share-btn {
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
}
#share-btn:hover {
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
}
#gallery { z-index: 999999; }
#gallery img:hover {transform: scale(2.3); z-index: 999999; position: relative; padding-right: 30%; padding-bottom: 30%;}
#gallery button img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; padding-bottom: 0;}
@media (hover: none) {
#gallery img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; 0;}
}
.html2canvas-container { width: 3000px !important; height: 3000px !important; }
"""
examples = [
'examples/ramen.png',
'examples/cake.png',
'examples/couch.png',
'examples/tattoo.png',
'examples/cupcakes.png',
]
# Download model from HF Hub.
ckpt_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/gill', filename='pretrained_ckpt.pth.tar')
decision_model_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/gill', filename='decision_model.pth.tar')
args_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/gill', filename='model_args.json')
model = models.load_gill('./', args_path, ckpt_path, decision_model_path)
def upload_image(state, image_input):
conversation = state[0]
chat_history = state[1]
input_image = Image.open(image_input.name).resize(
(224, 224)).convert('RGB')
input_image.save(image_input.name) # Overwrite with smaller image.
conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
return [conversation, chat_history + [input_image, ""]], conversation
def reset():
return [[], []], []
def reset_last(state):
conversation = state[0][:-1]
chat_history = state[1][:-2]
return [conversation, chat_history], conversation
def save_image_to_local(image: Image.Image):
# TODO(jykoh): Update so the url path is used, to prevent repeat saving.
filename = '/tmp/' + next(tempfile._get_candidate_names()) + '.png'
image.save(filename)
return filename
def generate_for_prompt(input_text, state, ret_scale_factor, num_words, temperature):
g_cuda = torch.Generator(device='cuda').manual_seed(1337)
# Ignore empty inputs.
if len(input_text) == 0:
return state, state[0], gr.update(visible=True)
input_prompt = 'Q: ' + input_text + '\nA:'
conversation = state[0]
chat_history = state[1]
print('Generating for', chat_history, flush=True)
# If an image was uploaded, prepend it to the model.
model_inputs = chat_history
model_inputs.append(input_prompt)
# Remove empty text.
model_inputs = [s for s in model_inputs if s != '']
top_p = 1.0
if temperature != 0.0:
top_p = 0.95
print('Running model.generate_for_images_and_texts with', model_inputs, flush=True)
model_outputs = model.generate_for_images_and_texts(model_inputs,
num_words=max(num_words, 1), ret_scale_factor=ret_scale_factor, top_p=top_p,
temperature=temperature, max_num_rets=1,
num_inference_steps=50, generator=g_cuda)
print('model_outputs', model_outputs, ret_scale_factor, flush=True)
response = ''
text_outputs = []
for output_i, p in enumerate(model_outputs):
if type(p) == str:
if output_i > 0:
response += '<br/>'
# Remove the image tokens for output.
text_outputs.append(p.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', ''))
response += p
if len(model_outputs) > 1:
response += '<br/>'
elif type(p) == dict:
# Decide whether to generate or retrieve.
if p['decision'] is not None and p['decision'][0] == 'gen':
image = p['gen'][0][0]#.resize((224, 224))
filename = save_image_to_local(image)
response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Generated)</p>'
else:
image = p['ret'][0][0]#.resize((224, 224))
filename = save_image_to_local(image)
response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Retrieved)</p>'
chat_history = model_inputs + \
[' '.join([s for s in model_outputs if type(s) == str]) + '\n']
# Remove [RET] from outputs.
conversation.append((input_text, response.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', '')))
# Set input image to None.
print('state', state, flush=True)
print('updated state', [conversation, chat_history], flush=True)
return [conversation, chat_history], conversation, gr.update(visible=True), gr.update(visible=True)
with gr.Blocks(css=css) as demo:
gr.HTML("""
<h1>π GILL</h1>
<p>This is the official Gradio demo for the GILL model, a model that can process arbitrarily interleaved image and text inputs, and produce image and text outputs.</p>
<strong>Paper:</strong> <a href="https://arxiv.org/abs/2305.17216" target="_blank">Generating Images with Multimodal Language Models</a>
<br/>
<strong>Project Website:</strong> <a href="https://jykoh.com/gill" target="_blank">GILL Website</a>
<br/>
<strong>Code and Models:</strong> <a href="https://github.com/kohjingyu/gill" target="_blank">GitHub</a>
<br/>
<br/>
<strong>Tips:</strong>
<ul>
<li>Start by inputting either image or text prompts (or both) and chat with GILL to get image-and-text replies.</li>
<li>Tweak the level of sensitivity to images and text using the parameters on the right.</li>
<li>Check out cool conversations in the examples or community tab for inspiration and share your own!</li>
<li>If the model outputs a blank image, it is because Stable Diffusion's safety filter detected inappropriate content. Please try again with a different prompt.</li>
<li>Outputs may differ slightly from the paper due to slight implementation differences. For reproducing paper results, please use our <a href="https://github.com/kohjingyu/gill" target="_blank">official code</a>.</li>
<li>For faster inference without waiting in queue, you may duplicate the space and use your own GPU: <a href="https://huggingface.co/spaces/jykoh/gill?duplicate=true"><img style="display: inline-block; margin-top: 0em; margin-bottom: 0em" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></li>
</ul>
""")
gr_state = gr.State([[], []]) # conversation, chat_history
with gr.Row():
with gr.Column(scale=0.7, min_width=500):
with gr.Row():
chatbot = gr.Chatbot(elem_id="chatbot", label="π GILL Chatbot")
with gr.Row():
image_btn = gr.UploadButton("πΌοΈ Upload Image", file_types=["image"])
text_input = gr.Textbox(label="Message", placeholder="Type a message")
with gr.Column():
submit_btn = gr.Button(
"Submit", interactive=True, variant="primary")
clear_last_btn = gr.Button("Undo")
clear_btn = gr.Button("Reset All")
with gr.Row(visible=False) as save_group:
save_button = gr.Button("πΎ Save Conversation as .png", elem_id="save-btn")
with gr.Row(visible=False) as share_group:
share_button = gr.Button("π€ Share to Community (opens new window)", elem_id="share-btn")
with gr.Column(scale=0.3, min_width=400):
ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.3, step=0.1, interactive=True,
label="Frequency multiplier for returning images (higher means more frequent)")
# max_ret_images = gr.Number(
# minimum=0, maximum=3, value=2, precision=1, interactive=True, label="Max images to return")
gr_max_len = gr.Slider(minimum=1, maximum=64, value=32,
step=1, interactive=True, label="Max # of words")
gr_temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True, label="Temperature (0 for deterministic, higher for more randomness)")
gallery = gr.Gallery(
value=[Image.open(e) for e in examples], label="Example Conversations", show_label=True, elem_id="gallery") #, grid=[2], height="auto")
text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
text_input.submit(lambda: "", None, text_input) # Reset chatbox.
submit_btn.click(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
submit_btn.click(lambda: "", None, text_input) # Reset chatbox.
image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot])
clear_last_btn.click(reset_last, [gr_state], [gr_state, chatbot])
clear_btn.click(reset, [], [gr_state, chatbot])
# share_button.click(None, [], [], _js=share_js)
# save_button.click(None, [], [], _js=save_js)
demo.queue(api_open=False, max_size=16)
demo.launch(debug=True, server_name="0.0.0.0", allowed_paths=['/tmp/'])
# demo.launch(debug=True, server_name="127.0.0.1")
|