File size: 10,645 Bytes
b6f5818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import tempfile
from share_btn import community_icon_html, loading_icon_html, share_js, save_js
import huggingface_hub
import gradio as gr
from gill import utils
from gill import models
import matplotlib.pyplot as plt
from PIL import Image
import torch
import numpy as np
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"


css = """
    #chatbot { min-height: 300px; }
    #save-btn {
        background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
    }
    #save-btn:hover {
        background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
    }
    #share-btn {
        background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
    }
    #share-btn:hover {
        background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
    }
    #gallery { z-index: 999999; }
    #gallery img:hover {transform: scale(2.3); z-index: 999999; position: relative; padding-right: 30%; padding-bottom: 30%;}
    #gallery button img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; padding-bottom: 0;}
    @media (hover: none) {
        #gallery img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; 0;}
    }
"""

examples = [
    'examples/sparrow.png',
    'examples/beaver.png',
    'examples/couch.png',
    'examples/guac.png',
    'examples/scraped_knee.png'
]

# Download model from HF Hub.
ckpt_path = huggingface_hub.hf_hub_download(
    repo_id='jykoh/gill', filename='pretrained_ckpt.pth.tar')
decision_model_path = huggingface_hub.hf_hub_download(
    repo_id='jykoh/gill', filename='decision_model.pth.tar')
args_path = huggingface_hub.hf_hub_download(
    repo_id='jykoh/gill', filename='model_args.json')
model = models.load_gill('./', args_path, ckpt_path, decision_model_path)


def upload_image(state, image_input):
    conversation = state[0]
    chat_history = state[1]
    input_image = Image.open(image_input.name).resize(
        (224, 224)).convert('RGB')
    input_image.save(image_input.name)  # Overwrite with smaller image.
    conversation += [(f'<img src="/file={image_input.name}" style="display: inline-block;">', "")]
    return [conversation, chat_history + [input_image, ""]], conversation


def reset():
    return [[], []], []


def reset_last(state):
    conversation = state[0][:-1]
    chat_history = state[1][:-2]
    return [conversation, chat_history], conversation


def save_image_to_local(image: Image.Image):
    # TODO(jykoh): Update so the url path is used, to prevent repeat saving.
    filename = next(tempfile._get_candidate_names()) + '.png'
    image.save(filename)
    return filename


def generate_for_prompt(input_text, state, ret_scale_factor, num_words, temperature):
    # Ignore empty inputs.
    if len(input_text) == 0:
        return state, state[0], gr.update(visible=True)

    input_prompt = 'Q: ' + input_text + '\nA:'
    conversation = state[0]
    chat_history = state[1]
    print('Generating for', chat_history, flush=True)

    # If an image was uploaded, prepend it to the model.
    model_inputs = chat_history
    model_inputs.append(input_prompt)

    top_p = 1.0
    if temperature != 0.0:
        top_p = 0.95

    print('Running model.generate_for_images_and_texts with',
          model_inputs, flush=True)
    model_outputs = model.generate_for_images_and_texts(model_inputs,
                                                        num_words=max(num_words, 1), ret_scale_factor=ret_scale_factor, top_p=top_p,
                                                        temperature=temperature, max_num_rets=1,
                                                        num_inference_steps=1)
    print('model_outputs', model_outputs, ret_scale_factor, flush=True)

    im_names = []
    response = ''
    text_outputs = []
    for output_i, p in enumerate(model_outputs):
        if type(p) == str:
            if output_i > 0:
                response += '<br/>'
            # Remove the image tokens for output.
            text_outputs.append(p.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', ''))
            response += p
            if len(model_outputs) > 1:
                response += '<br/>'
        elif type(p) == dict:
            # Decide whether to generate or retrieve.
            if p['decision'] is not None and p['decision'][0] == 'gen':
                image = p['gen'][0][0].resize((512, 512))
                filename = save_image_to_local(image)
                response += f'<img src="/file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555;">(Generated)</p>'
            else:
                image = p['ret'][0][0].resize((512, 512))
                filename = save_image_to_local(image)
                response += f'<img src="/file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555;">(Retrieved)</p>'


    chat_history = model_inputs + \
        [' '.join([s for s in model_outputs if type(s) == str]) + '\n']
    # Remove [RET] from outputs.
    conversation.append((input_text, response.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', '')))

    # Set input image to None.
    print('state', state, flush=True)
    print('updated state', [conversation, chat_history], flush=True)
    return [conversation, chat_history], conversation, gr.update(visible=True), gr.update(visible=True)


with gr.Blocks(css=css) as demo:
    gr.HTML("""
        <h1>πŸ§€ FROMAGe</h1>
        <p>This is the official Gradio demo for the FROMAGe model, a model that can process arbitrarily interleaved image and text inputs, and produce image and text outputs.</p>

        <strong>Paper:</strong> <a href="https://arxiv.org/abs/2301.13823" target="_blank">Grounding Language Models to Images for Multimodal Generation</a>
        <br/>
        <strong>Project Website:</strong> <a href="https://jykoh.com/fromage" target="_blank">FROMAGe Website</a>
        <br/>
        <strong>Code and Models:</strong> <a href="https://github.com/kohjingyu/fromage" target="_blank">GitHub</a>
        <br/>
        <br/>

        <strong>Tips:</strong>
        <ul>
        <li>Start by inputting either image or text prompts (or both) and chat with FROMAGe to get image-and-text replies.</li>
        <li>Tweak the level of sensitivity to images and text using the parameters on the right.</li>
        <li>FROMAGe <i>retrieves</i> images from a database, and doesn't generate novel images, and will not be able to return images outside those in Conceptual Captions.</li>
        <li>Check out cool conversations in the examples or community tab for inspiration and share your own!</li>
        <li>For faster inference without waiting in queue, you may duplicate the space and use your own GPU: <a href="https://huggingface.co/spaces/jykoh/fromage?duplicate=true"><img style="display: inline-block; margin-top: 0em; margin-bottom: 0em" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></li>
        </ul>
    """)

    gr_state = gr.State([[], []])  # conversation, chat_history

    with gr.Row():
        with gr.Column(scale=0.7, min_width=500):
            with gr.Row():
                chatbot = gr.Chatbot(elem_id="chatbot", label="πŸ§€ FROMAGe Chatbot")
            with gr.Row():
                image_btn = gr.UploadButton("πŸ–ΌοΈ Upload Image", file_types=["image"])

                text_input = gr.Textbox(label="Message", placeholder="Type a message")

                with gr.Column():
                    submit_btn = gr.Button(
                        "Submit", interactive=True, variant="primary")
                    clear_last_btn = gr.Button("Undo")
                    clear_btn = gr.Button("Reset All")
                    with gr.Row(visible=False) as save_group:
                        save_button = gr.Button("πŸ’Ύ Save Conversation as .png", elem_id="save-btn")

                    with gr.Row(visible=False) as share_group:
                        share_button = gr.Button("πŸ€— Share to Community (opens new window)", elem_id="share-btn")

        with gr.Column(scale=0.3, min_width=400):
            ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.0, step=0.1, interactive=True,
                                         label="Frequency multiplier for returning images (higher means more frequent)")
            # max_ret_images = gr.Number(
            #     minimum=0, maximum=3, value=2, precision=1, interactive=True, label="Max images to return")
            gr_max_len = gr.Slider(minimum=1, maximum=64, value=32,
                                   step=1, interactive=True, label="Max # of words")
            gr_temperature = gr.Slider(
                minimum=0.0, maximum=1.0, value=0.0, interactive=True, label="Temperature (0 for deterministic, higher for more randomness)")

            gallery = gr.Gallery(
                value=[Image.open(e) for e in examples], label="Example Conversations", show_label=True, elem_id="gallery",
            ).style(grid=[2], height="auto")

    text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
                      gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
    text_input.submit(lambda: "", None, text_input)  # Reset chatbox.
    submit_btn.click(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
                     gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
    submit_btn.click(lambda: "", None, text_input)  # Reset chatbox.

    image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot])
    clear_last_btn.click(reset_last, [gr_state], [gr_state, chatbot])
    clear_btn.click(reset, [], [gr_state, chatbot])
    share_button.click(None, [], [], _js=share_js)
    save_button.click(None, [], [], _js=save_js)


demo.queue(concurrency_count=1, api_open=False, max_size=16)
# demo.launch(debug=True, server_name="0.0.0.0")
demo.launch(debug=True, server_name="127.0.0.1")