File size: 10,397 Bytes
20d05ae
 
 
0cb3834
 
 
 
66d588d
eb3ba2e
 
0cb3834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20d05ae
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb3834
eb3ba2e
0cb3834
 
 
42cf67e
 
 
 
 
 
 
0cb3834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66d588d
0cb3834
 
 
 
 
1b5ebf2
0cb3834
 
 
 
 
 
 
 
1b5ebf2
 
 
 
0cb3834
 
 
1b5ebf2
0cb3834
1b5ebf2
 
 
 
 
 
0cb3834
eb3ba2e
 
 
 
 
 
20d05ae
 
 
0cb3834
 
 
 
 
37a0b8f
0cb3834
 
 
 
 
 
 
 
 
eb3ba2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb3834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3ba2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20d05ae
eb3ba2e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gradio as gr
from inference import Inference
import os
import zipfile
import hashlib
from utils.model import model_downloader, get_model
import requests
import json
from tts.constants import VOICE_METHODS, BARK_VOICES, EDGE_VOICES
from tts.conversion import tts_infer

api_url = "https://rvc-models-api.onrender.com/uploadfile/"

zips_folder = "./zips"
unzips_folder = "./unzips"
if not os.path.exists(zips_folder):
      os.mkdir(zips_folder)
if not os.path.exists(unzips_folder):
  os.mkdir(unzips_folder)
           
def calculate_md5(file_path):
    hash_md5 = hashlib.md5()
    with open(file_path, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()

def compress(modelname, files):
    file_path = os.path.join(zips_folder, f"{modelname}.zip")
    # Select the compression mode ZIP_DEFLATED for compression
    # or zipfile.ZIP_STORED to just store the file
    compression = zipfile.ZIP_DEFLATED

    # Comprueba si el archivo ZIP ya existe
    if not os.path.exists(file_path):
        # Si no existe, crea el archivo ZIP
        with zipfile.ZipFile(file_path, mode="w") as zf:
            try:
                for file in files:
                    if file:
                        # Agrega el archivo al archivo ZIP
                        zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression)
            except FileNotFoundError as fnf:
                print("An error occurred", fnf)
    else:
        # Si el archivo ZIP ya existe, agrega los archivos a un archivo ZIP existente
        with zipfile.ZipFile(file_path, mode="a") as zf:
            try:
                for file in files:
                    if file:
                        # Agrega el archivo al archivo ZIP
                         zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression)
            except FileNotFoundError as fnf:
                print("An error occurred", fnf)

    return file_path

def infer(model, f0_method, audio_file):
    print("****", audio_file)
    inference = Inference(
        model_name=model,
        f0_method=f0_method,
        source_audio_path=audio_file,
        output_file_name=os.path.join("./audio-outputs", os.path.basename(audio_file))
    )
    output = inference.run()
    if 'success' in output and output['success']:
        return output, output['file']
    else:
        return
    

def post_model(name, model_url, version, creator):
    modelname = model_downloader(model_url, zips_folder, unzips_folder)
    model_files = get_model(unzips_folder, modelname)
    
    if not model_files:
        return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo más tarde."

    if not model_files.get('pth'):
        return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo más tarde."
    
    md5_hash = calculate_md5(os.path.join(unzips_folder,model_files['pth']))
    zipfile = compress(modelname, list(model_files.values()))
    file_to_upload = open(zipfile, "rb")
    data = {
        "name": name,
        "version": version,
        "creator": creator,
        "hash": md5_hash
    }
    print("Subiendo archivo...")
    # Realizar la solicitud POST
    response = requests.post(api_url, files={"file": file_to_upload}, data=data)
    
    # Comprobar la respuesta
    if response.status_code == 200:
        result = response.json()
        return json.dumps(result, indent=4)
    else:
        print("Error al cargar el archivo:", response.status_code)
        return result

def search_model(name):
    web_service_url = "https://script.google.com/macros/s/AKfycbyRaNxtcuN8CxUrcA_nHW6Sq9G2QJor8Z2-BJUGnQ2F_CB8klF4kQL--U2r2MhLFZ5J/exec"
    response = requests.post(web_service_url, json={
        'type': 'search_by_filename',
        'name': name
    })
    result = []
    response.raise_for_status()  # Lanza una excepción en caso de error
    json_response = response.json()
    cont = 0
    result.append("""| Nombre del modelo | Url | Epoch | Sample Rate |
                  | ---------------- | -------------- |:------:|:-----------:|
                  """)
    yield "<br />".join(result)
    if json_response.get('ok', None):
        for model in json_response['ocurrences']:
            if cont < 20:
                model_name = str(model.get('name', 'N/A')).strip()
                model_url = model.get('url', 'N/A')
                epoch = model.get('epoch', 'N/A')
                sr = model.get('sr', 'N/A')
                line = f"""|{model_name}|<a>{model_url}</a>|{epoch}|{sr}|
                """
                result.append(line)
                yield "".join(result)
            cont += 1
            
def update_tts_methods_voice(select_value):
    if select_value == "Edge-tts":
        return gr.update(choices=EDGE_VOICES)
    elif select_value == "Bark-tts":
        return gr.update(choices=BARK_VOICES)

with gr.Blocks() as app:
    gr.HTML("<h1> Simple RVC Inference - by Juuxn 💻 </h1>")
    
    with gr.Tab("Inferencia"):
        model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Url del modelo", show_label=True)
        audio_path = gr.Audio(label="Archivo de audio", show_label=True, type="filepath", )
        f0_method = gr.Dropdown(choices=["harvest", "pm", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny", "rmvpe"], 
                                value="rmvpe", 
                                label="Algoritmo", show_label=True)
        # Salida
        with gr.Row():
            vc_output1 = gr.Textbox(label="Salida")
            vc_output2 = gr.Audio(label="Audio de salida")
                            
        btn = gr.Button(value="Convertir")
        btn.click(infer, inputs=[model_url, f0_method, audio_path], outputs=[vc_output1, vc_output2])
        
    with gr.TabItem("TTS"):
        with gr.Row():
            tts_text = gr.Textbox(
                label="Texto:",
                placeholder="Texto que deseas convertir a voz...",
                lines=6,
            )

        with gr.Column():
            with gr.Row():
                tts_model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Url del modelo RVC", show_label=True)
                
            with gr.Column():
                tts_method = gr.Dropdown(choices=VOICE_METHODS, value="Edge-tts", label="Método TTS:", visible=False)
                tts_model = gr.Dropdown(choices=EDGE_VOICES, label="Modelo TTS:", visible=True, interactive=True)
                tts_method.change(fn=update_tts_methods_voice, inputs=[tts_method], outputs=[tts_model])
                    
            with gr.Row():
                tts_vc_output1 = gr.Textbox(label="Salida")
                tts_vc_output2 = gr.Audio(label="Audio de salida")   
            
        tts_btn = gr.Button(value="Convertir")
        tts_btn.click(fn=tts_infer, inputs=[tts_text, tts_model_url, tts_method, tts_model], outputs=[tts_vc_output1, tts_vc_output2])
        
    with gr.Tab("Recursos"):
        gr.HTML("<h4>Buscar modelos</h4>")
        search_name = gr.Textbox(placeholder="Billie Eillish (RVC v2 - 100 epoch)", label="Nombre", show_label=True)
         # Salida
        with gr.Row():
            sarch_output = gr.Markdown(label="Salida")
            
        btn_search_model = gr.Button(value="Buscar")
        btn_search_model.click(fn=search_model, inputs=[search_name], outputs=[sarch_output])
        
        gr.HTML("<h4>Publica tu modelo</h4>")
        post_name = gr.Textbox(placeholder="Billie Eillish (RVC v2 - 100 epoch)", label="Nombre", show_label=True)
        post_model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Url del modelo", show_label=True)
        post_creator = gr.Textbox(placeholder="ID de discord o enlace al perfil del creador", label="Creador", show_label=True)
        post_version = gr.Dropdown(choices=["RVC v1", "RVC v2"], value="RVC v1", label="Versión", show_label=True)
        
         # Salida
        with gr.Row():
            post_output = gr.Markdown(label="Salida")
            
        btn_post_model = gr.Button(value="Publicar")
        btn_post_model.click(fn=post_model, inputs=[post_name, post_model_url, post_version, post_creator], outputs=[post_output])
                

        #     with gr.Column():
        #         model_voice_path07 = gr.Dropdown(
        #             label=i18n("RVC Model:"),
        #             choices=sorted(names),
        #             value=default_weight,
        #         )
        #         best_match_index_path1, _ = match_index(
        #             model_voice_path07.value
        #         )

        #         file_index2_07 = gr.Dropdown(
        #             label=i18n("Select the .index file:"),
        #             choices=get_indexes(),
        #             value=best_match_index_path1,
        #             interactive=True,
        #             allow_custom_value=True,
        #         )
        # with gr.Row():
        #     refresh_button_ = gr.Button(i18n("Refresh"), variant="primary")
        #     refresh_button_.click(
        #         fn=change_choices2,
        #         inputs=[],
        #         outputs=[model_voice_path07, file_index2_07],
        #     )
        # with gr.Row():
        #     original_ttsvoice = gr.Audio(label=i18n("Audio TTS:"))
        #     ttsvoice = gr.Audio(label=i18n("Audio RVC:"))

        # with gr.Row():
        #     button_test = gr.Button(i18n("Convert"), variant="primary")

        # button_test.click(
        #     tts.use_tts,
        #     inputs=[
        #         text_test,
        #         tts_test,
        #         model_voice_path07,
        #         file_index2_07,
        #         # transpose_test,
        #         vc_transform0,
        #         f0method8,
        #         index_rate1,
        #         crepe_hop_length,
        #         f0_autotune,
        #         ttsmethod_test,
        #     ],
        #     outputs=[ttsvoice, original_ttsvoice],
        # )

    
    
    app.queue(concurrency_count=511, max_size=1022).launch()
    #share=True