Spaces:
Runtime error
Runtime error
File size: 4,789 Bytes
eb3ba2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import os
import uuid
import numpy as np
import torch
import soundfile as sf
from gtts import gTTS
import edge_tts
from inference import Inference
import asyncio
#git+https://github.com/suno-ai/bark.git
# from transformers import AutoProcessor, BarkModel
# import nltk
# from nltk.tokenize import sent_tokenize
# from bark import SAMPLE_RATE
# now_dir = os.getcwd()
def cast_to_device(tensor, device):
try:
return tensor.to(device)
except Exception as e:
print(e)
return tensor
# Buscar la forma de evitar descargar el archivo de 4gb cada vez que crea una instancia
# def _bark_conversion_(text, voice_preset):
# os.makedirs(os.path.join(now_dir, "tts"), exist_ok=True)
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
# dtype = torch.float32 if "cpu" in device else torch.float16
# bark_processor = AutoProcessor.from_pretrained(
# "suno/bark",
# cache_dir=os.path.join(now_dir, "tts", "suno/bark"),
# torch_dtype=dtype,
# )
# bark_model = BarkModel.from_pretrained(
# "suno/bark",
# cache_dir=os.path.join(now_dir, "tts", "suno/bark"),
# torch_dtype=dtype,
# ).to(device)
# # bark_model.enable_cpu_offload()
# inputs = bark_processor(text=[text], return_tensors="pt", voice_preset=voice_preset)
# tensor_dict = {
# k: cast_to_device(v, device) if hasattr(v, "to") else v
# for k, v in inputs.items()
# }
# speech_values = bark_model.generate(**tensor_dict, do_sample=True)
# sampling_rate = bark_model.generation_config.sample_rate
# speech = speech_values.cpu().numpy().squeeze()
# return speech, sampling_rate
def tts_infer(tts_text, model_url, tts_method, tts_model):
print("*****************")
print(tts_text)
print(model_url)
if not tts_text:
return 'Primero escribe el texto que quieres convertir.', None
if not tts_model:
return 'Selecciona un modelo TTS antes de convertir.', None
if not model_url:
return 'Escribe la url de modelo que quieres usar antes de convertir.', None
f0_method = "harvest"
output_folder = "audios"
os.makedirs(output_folder, exist_ok=True)
converted_tts_filename = os.path.join(output_folder, f"tts_out_{uuid.uuid4()}.wav")
success = False
if len(tts_text) > 60:
tts_text = tts_text[:60]
print("DEMO; limit to 60 characters")
language = tts_model[:2]
if tts_method == "Edge-tts":
try:
asyncio.run(
edge_tts.Communicate(
tts_text, "-".join(tts_model.split("-")[:-1])
).save(converted_tts_filename)
)
success = True
except Exception as e:
print("ERROR", e)
try:
tts = gTTS(tts_text, lang=language)
tts.save(converted_tts_filename)
print(
f"No audio was received. Please change the tts voice for {tts_model}. USING gTTS."
)
success = True
except:
tts = gTTS("a", lang=language)
tts.save(converted_tts_filename)
print("Error: Audio will be replaced.")
success = False
# elif tts_method == "Bark-tts":
# try:
# script = tts_text.replace("\n", " ").strip()
# sentences = sent_tokenize(script)
# silence = np.zeros(int(0.25 * SAMPLE_RATE))
# pieces = []
# for sentence in sentences:
# audio_array, _ = _bark_conversion_(sentence, tts_model.split("-")[0])
# pieces += [audio_array, silence.copy()]
# sf.write(
# file=converted_tts_filename, samplerate=SAMPLE_RATE, data=np.concatenate(pieces)
# )
# except Exception as e:
# print(f"{e}")
# return None, None
if success:
inference = Inference(
model_name=model_url,
f0_method=f0_method,
source_audio_path=converted_tts_filename,
output_file_name=os.path.join("./audio-outputs", os.path.basename(converted_tts_filename)),
)
output = inference.run()
if os.path.exists(converted_tts_filename):
os.remove(converted_tts_filename)
if os.path.exists(os.path.join("weights", inference.model_name)):
os.remove(os.path.join("weights", inference.model_name))
if 'success' in output and output['success']:
return output, output['file']
else:
return output, None
else:
return "Ocurrió un error durante la conversión", None
|