Spaces:
Build error
Build error
File size: 5,186 Bytes
b93970c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
base_config: configs/tts/base.yaml
task_cls: tasks.vocoder.pwg.PwgTask
binarization_args:
with_wav: true
with_spk_embed: false
with_align: false
test_input_dir: ''
###########
# train and eval
###########
max_samples: 25600
max_sentences: 5
max_eval_sentences: 1
max_updates: 1000000
val_check_interval: 2000
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
sampling_rate: 22050 # Sampling rate.
fft_size: 1024 # FFT size.
hop_size: 256 # Hop size.
win_length: null # Window length.
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
num_mels: 80 # Number of mel basis.
fmin: 80 # Minimum freq in mel basis calculation.
fmax: 7600 # Maximum frequency in mel basis calculation.
format: "hdf5" # Feature file format. "npy" or "hdf5" is supported.
###########################################################
# GENERATOR NETWORK ARCHITECTURE SETTING #
###########################################################
generator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_size: 3 # Kernel size of dilated convolution.
layers: 30 # Number of residual block layers.
stacks: 3 # Number of stacks i.e., dilation cycles.
residual_channels: 64 # Number of channels in residual conv.
gate_channels: 128 # Number of channels in gated conv.
skip_channels: 64 # Number of channels in skip conv.
aux_channels: 80 # Number of channels for auxiliary feature conv.
# Must be the same as num_mels.
aux_context_window: 2 # Context window size for auxiliary feature.
# If set to 2, previous 2 and future 2 frames will be considered.
dropout: 0.0 # Dropout rate. 0.0 means no dropout applied.
use_weight_norm: true # Whether to use weight norm.
# If set to true, it will be applied to all of the conv layers.
upsample_net: "ConvInUpsampleNetwork" # Upsampling network architecture.
upsample_params: # Upsampling network parameters.
upsample_scales: [4, 4, 4, 4] # Upsampling scales. Prodcut of these must be the same as hop size.
use_pitch_embed: false
###########################################################
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
###########################################################
discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_size: 3 # Number of output channels.
layers: 10 # Number of conv layers.
conv_channels: 64 # Number of chnn layers.
bias: true # Whether to use bias parameter in conv.
use_weight_norm: true # Whether to use weight norm.
# If set to true, it will be applied to all of the conv layers.
nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv.
nonlinear_activation_params: # Nonlinear function parameters
negative_slope: 0.2 # Alpha in LeakyReLU.
###########################################################
# STFT LOSS SETTING #
###########################################################
stft_loss_params:
fft_sizes: [1024, 2048, 512] # List of FFT size for STFT-based loss.
hop_sizes: [120, 240, 50] # List of hop size for STFT-based loss
win_lengths: [600, 1200, 240] # List of window length for STFT-based loss.
window: "hann_window" # Window function for STFT-based loss
use_mel_loss: false
###########################################################
# ADVERSARIAL LOSS SETTING #
###########################################################
lambda_adv: 4.0 # Loss balancing coefficient.
###########################################################
# OPTIMIZER & SCHEDULER SETTING #
###########################################################
generator_optimizer_params:
lr: 0.0001 # Generator's learning rate.
eps: 1.0e-6 # Generator's epsilon.
weight_decay: 0.0 # Generator's weight decay coefficient.
generator_scheduler_params:
step_size: 200000 # Generator's scheduler step size.
gamma: 0.5 # Generator's scheduler gamma.
# At each step size, lr will be multiplied by this parameter.
generator_grad_norm: 10 # Generator's gradient norm.
discriminator_optimizer_params:
lr: 0.00005 # Discriminator's learning rate.
eps: 1.0e-6 # Discriminator's epsilon.
weight_decay: 0.0 # Discriminator's weight decay coefficient.
discriminator_scheduler_params:
step_size: 200000 # Discriminator's scheduler step size.
gamma: 0.5 # Discriminator's scheduler gamma.
# At each step size, lr will be multiplied by this parameter.
discriminator_grad_norm: 1 # Discriminator's gradient norm.
disc_start_steps: 40000 # Number of steps to start to train discriminator.
|