File size: 21,593 Bytes
e976963
 
 
 
 
278c42c
 
 
 
8ced135
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278c42c
 
 
e976963
 
278c42c
 
 
e976963
278c42c
 
 
e976963
278c42c
 
 
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72c5bf9
 
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
72c5bf9
 
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72c5bf9
 
 
 
 
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72c5bf9
 
 
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72c5bf9
 
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278c42c
 
 
 
 
e976963
 
 
278c42c
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278c42c
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import numpy as np, parselmouth, torch, pdb, sys, os
from time import time as ttime
import torch.nn.functional as F
import torchcrepe
from torch import Tensor
import scipy.signal as signal
import pyworld, os, traceback, faiss, librosa, torchcrepe
from scipy import signal
from functools import lru_cache
import gc, re

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
now_dir = os.path.join(BASE_DIR, 'src')
sys.path.append(now_dir)

from infer_pack.predictor.FCPE import FCPEF0Predictor
from infer_pack.predictor.RMVPE import RMVPE

bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)

input_audio_path2wav = {}


@lru_cache
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
    audio = input_audio_path2wav[input_audio_path]
    f0, t = pyworld.harvest(
        audio,
        fs=fs,
        f0_ceil=f0max,
        f0_floor=f0min,
        frame_period=frame_period,
    )
    f0 = pyworld.stonemask(audio, f0, t, fs)
    return f0


def change_rms(data1, sr1, data2, sr2, rate):
    rms1 = librosa.feature.rms(
        y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
    )
    rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
    rms1 = torch.from_numpy(rms1)
    rms1 = F.interpolate(
        rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
    ).squeeze()
    rms2 = torch.from_numpy(rms2)
    rms2 = F.interpolate(
        rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
    ).squeeze()
    rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
    data2 *= (
        torch.pow(rms1, torch.tensor(1 - rate))
        * torch.pow(rms2, torch.tensor(rate - 1))
    ).numpy()
    return data2


class VC(object):
    def __init__(self, tgt_sr, config):
        self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
            config.x_pad,
            config.x_query,
            config.x_center,
            config.x_max,
            config.is_half,
        )
        self.sr = 16000
        self.window = 160
        self.t_pad = self.sr * self.x_pad
        self.t_pad_tgt = tgt_sr * self.x_pad
        self.t_pad2 = self.t_pad * 2
        self.t_query = self.sr * self.x_query
        self.t_center = self.sr * self.x_center
        self.t_max = self.sr * self.x_max
        self.device = config.device
        

    def get_optimal_torch_device(self, index: int = 0) -> torch.device:
        if torch.cuda.is_available():
            return torch.device(
                f"cuda:{index % torch.cuda.device_count()}"
            )
        elif torch.backends.mps.is_available():
            return torch.device("mps")
        return torch.device("cpu")

    def get_f0_crepe_computation(
        self,
        x,
        f0_min,
        f0_max,
        p_len,
        hop_length=160,
        model="full",
    ):
        x = x.astype(
            np.float32
        )
        x /= np.quantile(np.abs(x), 0.999)
        torch_device = self.get_optimal_torch_device()
        audio = torch.from_numpy(x).to(torch_device, copy=True)
        audio = torch.unsqueeze(audio, dim=0)
        if audio.ndim == 2 and audio.shape[0] > 1:
            audio = torch.mean(audio, dim=0, keepdim=True).detach()
        audio = audio.detach()
        pitch: Tensor = torchcrepe.predict(
            audio,
            self.sr,
            hop_length,
            f0_min,
            f0_max,
            model,
            batch_size=hop_length * 2,
            device=torch_device,
            pad=True,
        )
        p_len = p_len or x.shape[0] // hop_length
        source = np.array(pitch.squeeze(0).cpu().float().numpy())
        source[source < 0.001] = np.nan
        target = np.interp(
            np.arange(0, len(source) * p_len, len(source)) / p_len,
            np.arange(0, len(source)),
            source,
        )
        f0 = np.nan_to_num(target)
        return f0

    def get_f0_official_crepe_computation(
        self,
        x,
        f0_min,
        f0_max,
        model="full",
    ):
        batch_size = 512
        audio = torch.tensor(np.copy(x))[None].float()
        f0, pd = torchcrepe.predict(
            audio,
            self.sr,
            self.window,
            f0_min,
            f0_max,
            model,
            batch_size=batch_size,
            device=self.device,
            return_periodicity=True,
        )
        pd = torchcrepe.filter.median(pd, 3)
        f0 = torchcrepe.filter.mean(f0, 3)
        f0[pd < 0.1] = 0
        f0 = f0[0].cpu().numpy()
        return f0

    def get_f0_pyin_computation(self, x, f0_min, f0_max):
        y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
        f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
        f0 = f0[1:]
        return f0
    
    def get_f0_hybrid_computation(
        self,
        methods_str,
        input_audio_path,
        x,
        f0_min,
        f0_max,
        p_len,
        filter_radius,
        crepe_hop_length,
        time_step,
    ):
        methods_str = re.search("hybrid\[(.+)\]", methods_str)
        if methods_str:
            methods = [method.strip() for method in methods_str.group(1).split("+")]
        f0_computation_stack = []
        print(f"Calculating f0 pitch estimations for methods {str(methods)}")
        x = x.astype(np.float32)
        x /= np.quantile(np.abs(x), 0.999)
        for method in methods:
            f0 = None
            if method == "crepe":
                f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
                f0 = f0[1:]
            elif method == "mangio-crepe":
                f0 = self.get_f0_crepe_computation(
                    x, f0_min, f0_max, p_len, crepe_hop_length
                )
            elif method == "rmvpe":
                if hasattr(self, "model_rmvpe") == False:

                    self.model_rmvpe = RMVPE(
                        os.path.join(BASE_DIR, 'rvc_models', 'rmvpe.pt'), is_half=self.is_half, device=self.device
                    )
                f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
                f0 = f0[1:]
            elif method == "fcpe":
                self.model_fcpe = FCPEF0Predictor(
                    os.path.join(BASE_DIR, 'rvc_models', 'fcpe.pt'),
                    f0_min=int(f0_min),
                    f0_max=int(f0_max),
                    dtype=torch.float32,
                    device=self.device,
                    sampling_rate=self.sr,
                    threshold=0.03,
                )
                f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
                del self.model_fcpe
                gc.collect()
            f0_computation_stack.append(f0)

        print(f"Calculating hybrid median f0 from the stack of {str(methods)}")
        f0_computation_stack = [fc for fc in f0_computation_stack if fc is not None]
        f0_median_hybrid = None
        if len(f0_computation_stack) == 1:
            f0_median_hybrid = f0_computation_stack[0]
        else:
            f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
        return f0_median_hybrid

    def get_f0(
        self,
        input_audio_path,
        x,
        p_len,
        f0_up_key,
        f0_method,
        filter_radius,
        crepe_hop_length,
        inp_f0=None,
    ):
        global input_audio_path2wav
        time_step = self.window / self.sr * 1000
        f0_min = 50
        f0_max = 1100
        f0_mel_min = 1127 * np.log(1 + f0_min / 700)
        f0_mel_max = 1127 * np.log(1 + f0_max / 700)
        if f0_method == "pm":
            f0 = (
                parselmouth.Sound(x, self.sr)
                .to_pitch_ac(
                    time_step=time_step / 1000,
                    voicing_threshold=0.6,
                    pitch_floor=f0_min,
                    pitch_ceiling=f0_max,
                )
                .selected_array["frequency"]
            )
            pad_size = (p_len - len(f0) + 1) // 2
            if pad_size > 0 or p_len - len(f0) - pad_size > 0:
                f0 = np.pad(
                    f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
                )
        
        elif f0_method == "harvest":
            input_audio_path2wav[input_audio_path] = x.astype(np.double)
            f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
            if int(filter_radius) > 2:
                f0 = signal.medfilt(f0, 3)
        
        elif f0_method == "dio":
            f0, t = pyworld.dio(
                x.astype(np.double),
                fs=self.sr,
                f0_ceil=f0_max,
                f0_floor=f0_min,
                frame_period=10,
            )
            f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
            f0 = signal.medfilt(f0, 3)
        
        elif f0_method == "crepe":
            f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)

        elif f0_method == "mangio-crepe":
            f0 = self.get_f0_crepe_computation(x, f0_min, f0_max, p_len, crepe_hop_length)
        
        elif f0_method == "rmvpe":
            if hasattr(self, "model_rmvpe") == False:

                self.model_rmvpe = RMVPE(
                    os.path.join(BASE_DIR, 'rvc_models', 'rmvpe.pt'), is_half=self.is_half, device=self.device
                )
            f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
        
        elif f0_method == "rmvpe+":
            params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min, 
                      'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius, 
                      'crepe_hop_length': crepe_hop_length, 'model': "full"
                      }
            f0 = self.get_pitch_dependant_rmvpe(**params)
        
        elif f0_method == "fcpe":
            self.model_fcpe = FCPEF0Predictor(
                os.path.join(BASE_DIR, 'rvc_models', 'fcpe.pt'),
                f0_min=int(f0_min),
                f0_max=int(f0_max),
                dtype=torch.float32,
                device=self.device,
                sampling_rate=self.sr,
                threshold=0.03,
            )
            f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
            del self.model_fcpe
            gc.collect()
        
        elif "hybrid" in f0_method:
            input_audio_path2wav[input_audio_path] = x.astype(np.double)
            f0 = self.get_f0_hybrid_computation(
                f0_method,
                input_audio_path,
                x,
                f0_min,
                f0_max,
                p_len,
                filter_radius,
                crepe_hop_length,
                time_step,
            )

        f0 *= pow(2, f0_up_key / 12)
        tf0 = self.sr // self.window
        if inp_f0 is not None:
            delta_t = np.round(
                (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
            ).astype("int16")
            replace_f0 = np.interp(
                list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
            )
            shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
            f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
                :shape
            ]
        f0bak = f0.copy()
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
            f0_mel_max - f0_mel_min
        ) + 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > 255] = 255
        f0_coarse = np.rint(f0_mel).astype(int)

        return f0_coarse, f0bak

    def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
        if not hasattr(self, "model_rmvpe"):
            
            self.model_rmvpe = RMVPE(
                os.path.join(BASE_DIR, 'rvc_models', 'rmvpe.pt'),
                is_half=self.is_half,
                device=self.device,
            )
            
        f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)   
            
        return f0

    
    def vc(
        self,
        model,
        net_g,
        sid,
        audio0,
        pitch,
        pitchf,
        times,
        index,
        big_npy,
        index_rate,
        version,
        protect,
    ):
        feats = torch.from_numpy(audio0)
        if self.is_half:
            feats = feats.half()
        else:
            feats = feats.float()
        if feats.dim() == 2:
            feats = feats.mean(-1)
        assert feats.dim() == 1, feats.dim()
        feats = feats.view(1, -1)
        padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)

        inputs = {
            "source": feats.to(self.device),
            "padding_mask": padding_mask,
            "output_layer": 9 if version == "v1" else 12,
        }
        t0 = ttime()
        with torch.no_grad():
            logits = model.extract_features(**inputs)
            feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
        if protect < 0.5 and pitch != None and pitchf != None:
            feats0 = feats.clone()
        if (
            isinstance(index, type(None)) == False
            and isinstance(big_npy, type(None)) == False
            and index_rate != 0
        ):
            npy = feats[0].cpu().numpy()
            if self.is_half:
                npy = npy.astype("float32")

            score, ix = index.search(npy, k=8)
            weight = np.square(1 / score)
            weight /= weight.sum(axis=1, keepdims=True)
            npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)

            if self.is_half:
                npy = npy.astype("float16")
            feats = (
                torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
                + (1 - index_rate) * feats
            )

        feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
        if protect < 0.5 and pitch != None and pitchf != None:
            feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
                0, 2, 1
            )
        t1 = ttime()
        p_len = audio0.shape[0] // self.window
        if feats.shape[1] < p_len:
            p_len = feats.shape[1]
            if pitch != None and pitchf != None:
                pitch = pitch[:, :p_len]
                pitchf = pitchf[:, :p_len]

        if protect < 0.5 and pitch != None and pitchf != None:
            pitchff = pitchf.clone()
            pitchff[pitchf > 0] = 1
            pitchff[pitchf < 1] = protect
            pitchff = pitchff.unsqueeze(-1)
            feats = feats * pitchff + feats0 * (1 - pitchff)
            feats = feats.to(feats0.dtype)
        p_len = torch.tensor([p_len], device=self.device).long()
        with torch.no_grad():
            if pitch != None and pitchf != None:
                audio1 = (
                    (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
                    .data.cpu()
                    .float()
                    .numpy()
                )
            else:
                audio1 = (
                    (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
                )
        del feats, p_len, padding_mask
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        t2 = ttime()
        times[0] += t1 - t0
        times[2] += t2 - t1
        return audio1

    def pipeline(
        self,
        model,
        net_g,
        sid,
        audio,
        input_audio_path,
        times,
        f0_up_key,
        f0_method,
        file_index,
        index_rate,
        if_f0,
        filter_radius,
        tgt_sr,
        resample_sr,
        rms_mix_rate,
        version,
        protect,
        crepe_hop_length,
        f0_file=None,
    ):
        if (
            file_index != ""
            and os.path.exists(file_index) == True
            and index_rate != 0
        ):
            try:
                index = faiss.read_index(file_index)
                big_npy = index.reconstruct_n(0, index.ntotal)
            except:
                traceback.print_exc()
                index = big_npy = None
        else:
            index = big_npy = None
        audio = signal.filtfilt(bh, ah, audio)
        audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
        opt_ts = []
        if audio_pad.shape[0] > self.t_max:
            audio_sum = np.zeros_like(audio)
            for i in range(self.window):
                audio_sum += audio_pad[i : i - self.window]
            for t in range(self.t_center, audio.shape[0], self.t_center):
                opt_ts.append(
                    t
                    - self.t_query
                    + np.where(
                        np.abs(audio_sum[t - self.t_query : t + self.t_query])
                        == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
                    )[0][0]
                )
        s = 0
        audio_opt = []
        t = None
        t1 = ttime()
        audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
        p_len = audio_pad.shape[0] // self.window
        inp_f0 = None
        if hasattr(f0_file, "name") == True:
            try:
                with open(f0_file.name, "r") as f:
                    lines = f.read().strip("\n").split("\n")
                inp_f0 = []
                for line in lines:
                    inp_f0.append([float(i) for i in line.split(",")])
                inp_f0 = np.array(inp_f0, dtype="float32")
            except:
                traceback.print_exc()
        sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
        pitch, pitchf = None, None
        if if_f0 == 1:
            pitch, pitchf = self.get_f0(
                input_audio_path,
                audio_pad,
                p_len,
                f0_up_key,
                f0_method,
                filter_radius,
                crepe_hop_length,
                inp_f0,
            )
            pitch = pitch[:p_len]
            pitchf = pitchf[:p_len]
            if self.device == "mps":
                pitchf = pitchf.astype(np.float32)
            pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
            pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
        t2 = ttime()
        times[1] += t2 - t1
        for t in opt_ts:
            t = t // self.window * self.window
            if if_f0 == 1:
                audio_opt.append(
                    self.vc(
                        model,
                        net_g,
                        sid,
                        audio_pad[s : t + self.t_pad2 + self.window],
                        pitch[:, s // self.window : (t + self.t_pad2) // self.window],
                        pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
                        times,
                        index,
                        big_npy,
                        index_rate,
                        version,
                        protect,
                    )[self.t_pad_tgt : -self.t_pad_tgt]
                )
            else:
                audio_opt.append(
                    self.vc(
                        model,
                        net_g,
                        sid,
                        audio_pad[s : t + self.t_pad2 + self.window],
                        None,
                        None,
                        times,
                        index,
                        big_npy,
                        index_rate,
                        version,
                        protect,
                    )[self.t_pad_tgt : -self.t_pad_tgt]
                )
            s = t
        if if_f0 == 1:
            audio_opt.append(
                self.vc(
                    model,
                    net_g,
                    sid,
                    audio_pad[t:],
                    pitch[:, t // self.window :] if t is not None else pitch,
                    pitchf[:, t // self.window :] if t is not None else pitchf,
                    times,
                    index,
                    big_npy,
                    index_rate,
                    version,
                    protect,
                )[self.t_pad_tgt : -self.t_pad_tgt]
            )
        else:
            audio_opt.append(
                self.vc(
                    model,
                    net_g,
                    sid,
                    audio_pad[t:],
                    None,
                    None,
                    times,
                    index,
                    big_npy,
                    index_rate,
                    version,
                    protect,
                )[self.t_pad_tgt : -self.t_pad_tgt]
            )
        audio_opt = np.concatenate(audio_opt)
        if rms_mix_rate != 1:
            audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
        if resample_sr >= 16000 and tgt_sr != resample_sr:
            audio_opt = librosa.resample(
                audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
            )
        audio_max = np.abs(audio_opt).max() / 0.99
        max_int16 = 32768
        if audio_max > 1:
            max_int16 /= audio_max
        audio_opt = (audio_opt * max_int16).astype(np.int16)
        del pitch, pitchf, sid
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return audio_opt