File size: 10,593 Bytes
32544a0
6a1ec3e
 
08e7ad4
 
32544a0
6a1ec3e
 
 
 
 
 
 
2aca9bf
 
 
6a1ec3e
 
 
 
 
 
 
 
 
 
2aca9bf
 
6a1ec3e
 
 
 
 
 
 
 
 
 
 
2aca9bf
 
6a1ec3e
 
 
 
 
 
32544a0
6a1ec3e
 
 
 
2aca9bf
 
6a1ec3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0fba4a
6a1ec3e
 
 
 
 
 
 
 
 
 
08e7ad4
 
6a1ec3e
 
 
 
 
 
6955362
 
 
 
 
 
08e7ad4
2aca9bf
08e7ad4
6955362
 
 
 
2aca9bf
 
6955362
 
6a1ec3e
08e7ad4
 
 
 
 
b0fba4a
 
2aca9bf
b0fba4a
 
 
 
 
2aca9bf
 
6a1ec3e
b0fba4a
 
 
 
 
 
 
 
 
2aca9bf
 
 
 
 
 
b0fba4a
6a1ec3e
08e7ad4
6a1ec3e
 
 
 
 
 
6955362
b0fba4a
 
2aca9bf
6a1ec3e
2aca9bf
6a1ec3e
08e7ad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0fba4a
 
 
 
08e7ad4
 
 
 
 
b0fba4a
 
 
2aca9bf
 
b0fba4a
 
 
08e7ad4
2aca9bf
 
08e7ad4
 
 
 
 
 
 
 
 
 
2aca9bf
 
 
 
08e7ad4
b0fba4a
 
 
 
 
 
08e7ad4
 
2aca9bf
08e7ad4
 
 
 
2aca9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1ec3e
 
 
 
 
 
 
 
 
 
6955362
 
b0fba4a
 
2aca9bf
b0fba4a
6a1ec3e
 
b0fba4a
6a1ec3e
 
5dae289
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gradio as gr
from transformers import pipeline
from PIL import Image
import cv2
import numpy as np

# Function to classify the face shape
def classify_face_shape(image):
    
    # Initialize the pipeline
    pipe = pipeline("image-classification", model="metadome/face_shape_classification")
    
    # Run the pipeline on the uploaded image
    #output = pipe(image)
    output = pipe("face_region.jpg") # use the face_region image instead

    # Log the output for debugging
    print("Pipeline output for shape:", output)
    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}
    
    return formatted_output
    
def classify_age(image):
    pipe = pipeline("image-classification", model="nateraw/vit-age-classifier")
    # Run the pipeline on the uploaded image
    #output = pipe(image)
    output = pipe("face_region.jpg") # use the face_region image instead
    
    print("Pipeline output for age:", output)
    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}
    
    return formatted_output
    
def classify_skin_type(image):
    pipe = pipeline("image-classification", model="dima806/skin_types_image_detection")
    
    # Run the pipeline on the uploaded image
    #output = pipe(image)
    output = pipe("face_region.jpg") # use the face_region image instead
    
    print("Pipeline output for skin_type:", output)
    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}
    
    return formatted_output

def classify_acne_type(image):
    pipe = pipeline("image-classification", model="imfarzanansari/skintelligent-acne")
    
    # Run the pipeline on the uploaded image
    #output = pipe(image)
    output = pipe("face_region.jpg") # use the face_region image instead
    
    print("Pipeline output for acne:", output)
    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}
    
    return formatted_output

def classify_hair_color(image):
    
    #pipe = pipeline("image-classification", model="enzostvs/hair-color")
    pipe = pipeline("image-classification", model="londe33/hair_v02")
    
    # Run the pipeline on the uploaded image
    output = pipe(image)
    
    print("Pipeline output for hair color:", output)
    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}
    
    return formatted_output

def classify_eye_shape(image):
    
    pipe = pipeline("image-classification", model="justingrammens/eye-shape")
    
    # Run the pipeline on the uploaded image
    #output = pipe(image)
    output = pipe("eye_regions.jpg") # use the eye_regions image instead
    
    print("Pipeline output for eye shape:", output)
    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}
    
    return formatted_output

def classify_eye_color(image):

    pipe = pipeline("image-classification", model="justingrammens/eye-color")
    
    # Run the pipeline on the uploaded image
    #output = pipe(image)
    print("WEARE USING THIS CODE TO GET THE RESULT FOR EYE COLOR!!!!!!")
    output = pipe("eye_regions.jpg") #use the eye_regions image instead
    
    print("Pipeline output for eye color:", output)
    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}

    print("THIS IS FORMATTED OUTPUT!" + str(formatted_output))
    
    return formatted_output
    
def process_gradio_image(pil_image):
    # Convert PIL image to NumPy array
    image = np.array(pil_image)
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)  # Convert RGB (from PIL) to BGR (OpenCV default)
    return image

def classify_race(image):
    pipe = pipeline("image-classification", model="cledoux42/Ethnicity_Test_v003")
    # Run the pipeline on the uploaded image
    output = pipe("face_region.jpg")

    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}

    print(formatted_output)
    
    return formatted_output

def classify_gender(image):
    pipe = pipeline("image-classification", model="rizvandwiki/gender-classification")
    output = pipe("face_region.jpg")
    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}
    return formatted_output

def classify_wrinkles(image):
    pipe = pipeline("image-classification", model="imfarzanansari/skintelligent-wrinkles")
    output = pipe("face_region.jpg")
    # Format the output to be compatible with gr.outputs.Label
    formatted_output = {item['label']: item['score'] for item in output}
    return formatted_output

def classify_image_with_multiple_models(image):
    create_eye_region(image)
    face_shape_result = classify_face_shape(image)
    age_result = classify_age(image)
    skin_type_result = classify_skin_type(image)
    acne_results = classify_acne_type(image)
    hair_color_results = classify_hair_color(image)
    eye_shape = classify_eye_shape(image)
    eye_color = classify_eye_color(image)
    race = classify_race(image)
    gender = classify_gender(image)
    wrinkles = classify_wrinkles(image)

    return face_shape_result, age_result, skin_type_result, acne_results, hair_color_results, eye_shape, eye_color, race, gender, wrinkles, Image.open("segmented_face.jpg")

def create_eye_region(image):
    # Load the pre-trained face detector
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
    eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')

    image = process_gradio_image(image)
    # Convert the image to grayscale
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # Detect faces in the image
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:
        # Draw a rectangle around the face
        cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 2)

        # Extract the face region
        face_roi = image[y:y + h, x:x + w]
        cv2.imwrite('face_region.jpg', face_roi)

        # Region of Interest (ROI) for the face
        roi_gray = gray[y:y + h, x:x + w]
        roi_color = image[y:y + h, x:x + w]

        # Detect eyes in the face ROI
        eyes = eye_cascade.detectMultiScale(roi_gray, scaleFactor=1.1, minNeighbors=10, minSize=(20, 20))

        eye_positions = []
        #for (ex, ey, ew, eh) in eyes:
        for (ex, ey, ew, eh) in eyes[:1]:
            # Ensure eyes are within the upper half of the face region
            if ey + eh < h // 2:
                eye_positions.append((ex, ey, ew, eh))

        #for (ex, ey, ew, eh) in eyes:
        for (ex, ey, ew, eh) in eyes[:1]:
            # Draw a rectangle around the eyes
            cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)

            # Extract the eye region
            eye_roi = roi_color[ey:ey + eh, ex:ex + ew]
            cv2.imwrite('eye_regions.jpg', eye_roi)

            # Calculate the average color of the eye region
            avg_color = np.mean(eye_roi, axis=(0, 1))

            print("Average color:", avg_color)
            #color = "NULL"

            color = classify_eye_color_opencv(avg_color)
            # Classify eye color based on average color
            #if avg_color[0] > avg_color[1] and avg_color[0] > avg_color[2]:
            #    color = "Brown"
            #elif avg_color[1] > avg_color[0] and avg_color[1] > avg_color[2]:
            #    color = "Green"
            #else:
            #    color = "Blue"

            # Display the eye color
            cv2.putText(image, color, (ex, ey - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

            cv2.imwrite('segmented_face.jpg', image)



def classify_eye_color_opencv(avg_color):
    """
    Classify eye color based on average BGR values from cv2 image.
    
    Args:
        avg_color: numpy array containing [B, G, R] values
        
    Returns:
        str: classified eye color
    """
    # Convert BGR to RGB (since OpenCV uses BGR)

    #avg_color = np.mean(avg_color, axis=(0, 1))
    b, g, r = avg_color
    
    # Define color ranges for each eye color (in BGR)
    # These thresholds may need adjustment based on your specific lighting conditions
    
    # Check brown eyes (darker, red-dominant)
    if r > g and r > b and r > 100:
        if g < 90 and b < 90:
            return "brown"
            
    # Check amber eyes (golden-brown)
    if r > 150 and g > 100 and b < 100:
        if r > g > b:
            return "amber"
            
    # Check hazel eyes (mix of brown and green)
    if g > 100 and r > 100 and b < 100:
        if abs(r - g) < 40:
            return "hazel"
            
    # Check green eyes (green-dominant)
    if g > r and g > b:
        if g > 100:
            return "green"
            
    # Check blue eyes (blue-dominant)
    if b > r and b > g:
        if b > 100:
            return "blue"
            
    # Check gray eyes (all values similar)
    if abs(r - g) < 20 and abs(g - b) < 20 and abs(r - b) < 20:
        if r > 100 and g > 100 and b > 100:
            return "gray"
    
    return "undefined"


# Create the Gradio interface
demo = gr.Interface(
    fn=classify_image_with_multiple_models,  # The function to run
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Label(num_top_classes=5, label="Face Shape"), 
        gr.Label(num_top_classes=5, label="Age"), 
        gr.Label(num_top_classes=3, label="Skin Type"), 
        gr.Label(num_top_classes=5, label="Acne Type"), 
        gr.Label(num_top_classes=5, label="Hair Color"), 
        gr.Label(num_top_classes=4, label="Eye Shape"),
        gr.Label(num_top_classes=5, label="Eye Color"),
        gr.Label(num_top_classes=7, label="Race"),
        gr.Label(num_top_classes=2, label="Gender"),
        gr.Label(num_top_classes=2, label="Wrinkles"),
        gr.Image(type="pil", label="Segmented Face", value="segmented_face.jpg")  # Provide the path to the image
    ],
    title="Multiple Model Classification",
    description="Upload an image to classify the face using multiple classification models"
)
    
#demo.launch(auth=("admin", "pass1234"))
demo.launch()