Spaces:
Running
Running
File size: 6,635 Bytes
32544a0 6a1ec3e 08e7ad4 32544a0 6a1ec3e 32544a0 6a1ec3e 08e7ad4 6a1ec3e 6955362 08e7ad4 6955362 6a1ec3e 08e7ad4 6a1ec3e 08e7ad4 6a1ec3e 6955362 6a1ec3e 6955362 6a1ec3e 08e7ad4 6a1ec3e 6955362 6a1ec3e 405f8e6 6a1ec3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import gradio as gr
from transformers import pipeline
from PIL import Image
import cv2
import numpy as np
# Function to classify the face shape
def classify_face_shape(image):
# Initialize the pipeline
pipe = pipeline("image-classification", model="metadome/face_shape_classification")
# Run the pipeline on the uploaded image
output = pipe(image)
# Log the output for debugging
print("Pipeline output for shape:", output)
# Format the output to be compatible with gr.outputs.Label
formatted_output = {item['label']: item['score'] for item in output}
return formatted_output
def classify_age(image):
pipe = pipeline("image-classification", model="nateraw/vit-age-classifier")
# Run the pipeline on the uploaded image
output = pipe(image)
print("Pipeline output for age:", output)
# Format the output to be compatible with gr.outputs.Label
formatted_output = {item['label']: item['score'] for item in output}
return formatted_output
def classify_skin_type(image):
pipe = pipeline("image-classification", model="dima806/skin_types_image_detection")
# Run the pipeline on the uploaded image
output = pipe(image)
print("Pipeline output for skin_type:", output)
# Format the output to be compatible with gr.outputs.Label
formatted_output = {item['label']: item['score'] for item in output}
return formatted_output
def classify_acne_type(image):
pipe = pipeline("image-classification", model="imfarzanansari/skintelligent-acne")
# Run the pipeline on the uploaded image
output = pipe(image)
print("Pipeline output for acne:", output)
# Format the output to be compatible with gr.outputs.Label
formatted_output = {item['label']: item['score'] for item in output}
return formatted_output
def classify_hair_color(image):
#pipe = pipeline("image-classification", model="enzostvs/hair-color")
pipe = pipeline("image-classification", model="londe33/hair_v02")
# Run the pipeline on the uploaded image
output = pipe(image)
print("Pipeline output for hir color:", output)
# Format the output to be compatible with gr.outputs.Label
formatted_output = {item['label']: item['score'] for item in output}
return formatted_output
def classify_eye_shape(image):
pipe = pipeline("image-classification", model="justingrammens/eye-shape")
# Run the pipeline on the uploaded image
#output = pipe(image)
output = pipe("eye_regions.jpg") # use the eye_regions image instead
print("Pipeline output for eye shape:", output)
# Format the output to be compatible with gr.outputs.Label
formatted_output = {item['label']: item['score'] for item in output}
return formatted_output
def classify_eye_color(image):
pipe = pipeline("image-classification", model="justingrammens/eye-color")
# Run the pipeline on the uploaded image
#output = pipe(image)
output = pipe("eye_regions.jpg") #use the eye_regions image instead
print("Pipeline output for eye color:", output)
# Format the output to be compatible with gr.outputs.Label
formatted_output = {item['label']: item['score'] for item in output}
return formatted_output
def process_gradio_image(pil_image):
# Convert PIL image to NumPy array
image = np.array(pil_image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert RGB (from PIL) to BGR (OpenCV default)
return image
def classify_image_with_multiple_models(image):
create_eye_region(image)
face_shape_result = classify_face_shape(image)
age_result = classify_age(image)
skin_type_result = classify_skin_type(image)
acne_results = classify_acne_type(image)
hair_color_results = classify_hair_color(image)
eye_shape = classify_eye_shape(image)
eye_color = classify_eye_color(image)
return face_shape_result, age_result, skin_type_result, acne_results, hair_color_results, eye_shape, eye_color
def create_eye_region(image):
# Load the pre-trained face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
image = process_gradio_image(image)
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
# Draw a rectangle around the face
cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 2)
# Region of Interest (ROI) for the face
roi_gray = gray[y:y + h, x:x + w]
roi_color = image[y:y + h, x:x + w]
# Detect eyes in the face ROI
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex, ey, ew, eh) in eyes:
# Draw a rectangle around the eyes
cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
# Extract the eye region
eye_roi = roi_color[ey:ey + eh, ex:ex + ew]
cv2.imwrite('eye_regions.jpg', eye_roi)
# Calculate the average color of the eye region
avg_color = np.mean(eye_roi, axis=(0, 1))
# Classify eye color based on average color
if avg_color[0] > avg_color[1] and avg_color[0] > avg_color[2]:
color = "Brown"
elif avg_color[1] > avg_color[0] and avg_color[1] > avg_color[2]:
color = "Green"
else:
color = "Blue"
# Display the eye color
cv2.putText(image, color, (ex, ey - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.imwrite('segmented_face.jpg', image)
# Create the Gradio interface
demo = gr.Interface(
fn=classify_image_with_multiple_models, # The function to run
inputs=gr.Image(type="pil"),
outputs=[
gr.Label(num_top_classes=5, label="Face Shape"),
gr.Label(num_top_classes=5, label="Age"),
gr.Label(num_top_classes=3, label="Skin Type"),
gr.Label(num_top_classes=5, label="Acne Type"),
gr.Label(num_top_classes=5, label="Hair Color"),
gr.Label(num_top_classes=4, label="Eye Shape"),
gr.Label(num_top_classes=5, label="Eye Color"),
],
title="Multiple Model Classification",
description="Upload an image to classify the face using mutiple classification models"
)
demo.launch(auth=("admin", "pass1234"))
#demo.launch()
|