Spaces:
Runtime error
Runtime error
File size: 17,100 Bytes
5e8eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
#pragma once
#include <atomic>
#include <utility>
#include <cstring>
#include <type_traits>
#include <cstdint>
#include "libipc/def.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_def.h"
#include "libipc/utility/log.h"
#include "libipc/utility/utility.h"
namespace ipc {
////////////////////////////////////////////////////////////////
/// producer-consumer implementation
////////////////////////////////////////////////////////////////
template <typename Flag>
struct prod_cons_impl;
template <>
struct prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
};
alignas(cache_line_size) std::atomic<circ::u2_t> rd_; // read index
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
constexpr circ::u2_t cursor() const noexcept {
return 0;
}
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
auto cur_wt = circ::index_of(wt_.load(std::memory_order_relaxed));
if (cur_wt == circ::index_of(rd_.load(std::memory_order_acquire) - 1)) {
return false; // full
}
std::forward<F>(f)(&(elems[cur_wt].data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
/**
* In single-single-unicast, 'force_push' means 'no reader' or 'the only one reader is dead'.
* So we could just disconnect all connections of receiver, and return false.
*/
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(~static_cast<circ::cc_t>(0u));
return false;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E* elems) {
auto cur_rd = circ::index_of(rd_.load(std::memory_order_relaxed));
if (cur_rd == circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::forward<F>(f)(&(elems[cur_rd].data_));
std::forward<R>(out)(true);
rd_.fetch_add(1, std::memory_order_release);
return true;
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi , trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
if (circ::index_of(cur_rd) ==
circ::index_of(wt_.load(std::memory_order_acquire))) {
return false; // empty
}
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi , relat::multi, trans::unicast>>
: prod_cons_impl<wr<relat::single, relat::multi, trans::unicast>> {
using flag_t = std::uint64_t;
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
circ::u2_t cur_ct, nxt_ct;
for (unsigned k = 0;;) {
cur_ct = ct_.load(std::memory_order_relaxed);
if (circ::index_of(nxt_ct = cur_ct + 1) ==
circ::index_of(rd_.load(std::memory_order_acquire))) {
return false; // full
}
if (ct_.compare_exchange_weak(cur_ct, nxt_ct, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
auto* el = elems + circ::index_of(cur_ct);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
while (1) {
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if (cur_ct != wt_.load(std::memory_order_relaxed)) {
return true;
}
if ((~cac_ct) != cur_ct) {
return true;
}
if (!el->f_ct_.compare_exchange_strong(cac_ct, 0, std::memory_order_relaxed)) {
return true;
}
wt_.store(nxt_ct, std::memory_order_release);
cur_ct = nxt_ct;
nxt_ct = cur_ct + 1;
el = elems + circ::index_of(cur_ct);
}
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&&, E*) {
wrapper->elems()->disconnect_receiver(1);
return false;
}
template <typename W, typename F, typename R,
template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
byte_t buff[DS];
for (unsigned k = 0;;) {
auto cur_rd = rd_.load(std::memory_order_relaxed);
auto cur_wt = wt_.load(std::memory_order_acquire);
auto id_rd = circ::index_of(cur_rd);
auto id_wt = circ::index_of(cur_wt);
if (id_rd == id_wt) {
auto* el = elems + id_wt;
auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
if ((~cac_ct) != cur_wt) {
return false; // empty
}
if (el->f_ct_.compare_exchange_weak(cac_ct, 0, std::memory_order_relaxed)) {
wt_.store(cur_wt + 1, std::memory_order_release);
}
k = 0;
}
else {
std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
std::forward<R>(out)(true);
return true;
}
ipc::yield(k);
}
}
}
};
template <>
struct prod_cons_impl<wr<relat::single, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
enum : rc_t {
ep_mask = 0x00000000ffffffffull,
ep_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t> rc_ { 0 }; // read-counter
};
alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index
alignas(cache_line_size) rc_t epoch_ { 0 }; // only one writer
circ::u2_t cursor() const noexcept {
return wt_.load(std::memory_order_acquire);
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch_)) {
return false; // has not finished yet
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
epoch_ += ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & ep_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
break;
}
ipc::yield(k);
}
std::forward<F>(f)(&(el->data_));
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E* elems) {
if (cur == cursor()) return false; // acquire
auto* el = elems + circ::index_of(cur++);
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & ep_mask) == 0) {
std::forward<R>(out)(true);
return true;
}
auto nxt_rc = cur_rc & ~static_cast<rc_t>(wrapper->connected_id());
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)((nxt_rc & ep_mask) == 0);
return true;
}
ipc::yield(k);
}
}
};
template <>
struct prod_cons_impl<wr<relat::multi, relat::multi, trans::broadcast>> {
using rc_t = std::uint64_t;
using flag_t = std::uint64_t;
enum : rc_t {
rc_mask = 0x00000000ffffffffull,
ep_mask = 0x00ffffffffffffffull,
ep_incr = 0x0100000000000000ull,
ic_mask = 0xff000000ffffffffull,
ic_incr = 0x0000000100000000ull
};
template <std::size_t DataSize, std::size_t AlignSize>
struct elem_t {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
std::atomic<rc_t > rc_ { 0 }; // read-counter
std::atomic<flag_t> f_ct_ { 0 }; // commit flag
};
alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index
alignas(cache_line_size) std::atomic<rc_t> epoch_ { 0 };
circ::u2_t cursor() const noexcept {
return ct_.load(std::memory_order_acquire);
}
constexpr static rc_t inc_rc(rc_t rc) noexcept {
return (rc & ic_mask) | ((rc + ic_incr) & ~ic_mask);
}
constexpr static rc_t inc_mask(rc_t rc) noexcept {
return inc_rc(rc) & ~rc_mask;
}
template <typename W, typename F, typename E>
bool push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.load(std::memory_order_acquire);
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_relaxed);
circ::cc_t rem_cc = cur_rc & rc_mask;
if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch)) {
return false; // has not finished yet
}
else if (!rem_cc) {
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if ((cur_fl != cur_ct) && cur_fl) {
return false; // full
}
}
// consider rem_cc to be 0 here
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed) &&
epoch_.compare_exchange_weak(epoch, epoch, std::memory_order_acq_rel)) {
break;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename E>
bool force_push(W* wrapper, F&& f, E* elems) {
E* el;
circ::u2_t cur_ct;
rc_t epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
for (unsigned k = 0;;) {
circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
if (cc == 0) return false; // no reader
el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
auto cur_rc = el->rc_.load(std::memory_order_acquire);
circ::cc_t rem_cc = cur_rc & rc_mask;
if (cc & rem_cc) {
ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
if (cc == 0) return false; // no reader
}
// just compare & exchange
if (el->rc_.compare_exchange_weak(
cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed)) {
if (epoch == epoch_.load(std::memory_order_acquire)) {
break;
}
else if (push(wrapper, std::forward<F>(f), elems)) {
return true;
}
epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
}
ipc::yield(k);
}
// only one thread/process would touch here at one time
ct_.store(cur_ct + 1, std::memory_order_release);
std::forward<F>(f)(&(el->data_));
// set flag & try update wt
el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
return true;
}
template <typename W, typename F, typename R, typename E, std::size_t N>
bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E(& elems)[N]) {
auto* el = elems + circ::index_of(cur);
auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
if (cur_fl != ~static_cast<flag_t>(cur)) {
return false; // empty
}
++cur;
std::forward<F>(f)(&(el->data_));
for (unsigned k = 0;;) {
auto cur_rc = el->rc_.load(std::memory_order_acquire);
if ((cur_rc & rc_mask) == 0) {
std::forward<R>(out)(true);
el->f_ct_.store(cur + N - 1, std::memory_order_release);
return true;
}
auto nxt_rc = inc_rc(cur_rc) & ~static_cast<rc_t>(wrapper->connected_id());
bool last_one = false;
if ((last_one = (nxt_rc & rc_mask) == 0)) {
el->f_ct_.store(cur + N - 1, std::memory_order_release);
}
if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
std::forward<R>(out)(last_one);
return true;
}
ipc::yield(k);
}
}
};
} // namespace ipc
|