Spaces:
Runtime error
Runtime error
File size: 7,229 Bytes
a5c122b 27d01c0 889b719 a287230 27d01c0 1fa9a79 27d01c0 ac2c8ca e39c511 ac2c8ca e39c511 ac2c8ca e39c511 27d01c0 1fa9a79 27d01c0 a287230 27d01c0 1fa9a79 27d01c0 1fa9a79 27d01c0 1fa9a79 27d01c0 1fa9a79 27d01c0 1fa9a79 27d01c0 1fa9a79 616c877 27d01c0 1fa9a79 ac2c8ca 7c20e79 ac2c8ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
import json
import gradio as gr
import logging
import traceback
import requests
import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
try: from config_private import proxies, API_URL, API_KEY, TIMEOUT_SECONDS
except: from config import proxies, API_URL, API_KEY, TIMEOUT_SECONDS
timeout_bot_msg = 'Request timeout, network error. please check proxy settings in config.py.'
def get_full_error(chunk, stream_response):
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def predict_no_ui(inputs, top_p, temperature, history=[]):
messages = [{"role": "system", "content": ""}]
#
chat_counter = len(history) // 2
if chat_counter > 0:
for index in range(0, 2*chat_counter, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
# messages
payload = {
"model": "gpt-3.5-turbo",
# "model": "gpt-4",
"messages": messages,
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": False,
"presence_penalty": 0,
"frequency_penalty": 0,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
}
try:
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS*2)
except Exception as e:
traceback.print_exc()
raise TimeoutError
try:
result = json.loads(response.text)["choices"][0]["message"]["content"]
return result
except Exception as e:
if "choices" not in response.text: print(response.text)
raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text)
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', retry=False,
stream = True, additional_fn=None):
if additional_fn is not None:
import functional
importlib.reload(functional)
functional = functional.get_functionals()
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
if stream:
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield chatbot, history, "等待响应"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
}
chat_counter = len(history) // 2
print(f"chat_counter - {chat_counter}")
messages = [{"role": "system", "content": system_prompt}]
if chat_counter:
for index in range(0, 2*chat_counter, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if not (what_gpt_answer["content"] != "" or retry): continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
if retry and chat_counter:
messages.pop()
else:
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
chat_counter += 1
# messages
payload = {
"model": "gpt-3.5-turbo",
# "model": "gpt-4",
"messages": messages,
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
history.append(inputs)
try:
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS)
except:
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
yield chatbot, history, "请求超时"
raise TimeoutError
token_counter = 0
partial_words = ""
counter = 0
if stream:
stream_response = response.iter_lines()
while True:
chunk = next(stream_response)
if chunk == b'data: [DONE]':
break
if counter == 0:
counter += 1
continue
counter += 1
# check whether each line is non-empty
if chunk:
# decode each line as response data is in bytes
try:
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
logging.info(f'[response] {chatbot[-1][-1]}')
break
chunkjson = json.loads(chunk.decode()[6:])
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
partial_words = partial_words + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chatbot[-1] = (history[-2], history[-1])
token_counter += 1
yield chatbot, history, status_text
except Exception as e:
traceback.print_exc()
yield chatbot, history, "Json解析不合常规,很可能是文本过长"
chunk = get_full_error(chunk, stream_response)
error_msg = chunk.decode()
if "reduce the length" in error_msg:
chatbot[-1] = (history[-1], "输入的文本太长了,超过gpt的令牌数量限制")
yield chatbot, history, "Json解析不合常规,很可能是文本过长" + error_msg
return
|