File size: 7,457 Bytes
8c1c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import List, Optional, Tuple, Union

import numpy as np
import paddle
import PIL

from ...models import UNet2DModel, VQModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION


def preprocess(image):
    w, h = image.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = paddle.to_tensor(image)
    return 2.0 * image - 1.0


class LDMSuperResolutionPipeline(DiffusionPipeline):
    r"""
    A pipeline for image super-resolution using Latent

    This class inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)

    Parameters:
        vqvae ([`VQModel`]):
            Vector-quantized (VQ) VAE Model to encode and decode images to and from latent representations.
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`],
            [`EulerAncestralDiscreteScheduler`], [`DPMSolverMultistepScheduler`], or [`PNDMScheduler`].
    """

    def __init__(
        self,
        vqvae: VQModel,
        unet: UNet2DModel,
        scheduler: Union[
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
        ],
    ):
        super().__init__()
        self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler)

    @paddle.no_grad()
    def __call__(
        self,
        image: Union[paddle.Tensor, PIL.Image.Image],
        batch_size: Optional[int] = 1,
        num_inference_steps: Optional[int] = 100,
        eta: Optional[float] = 0.0,
        generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        **kwargs,
    ) -> Union[Tuple, ImagePipelineOutput]:
        r"""
        Args:
            image (`paddle.Tensor` or `PIL.Image.Image`):
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process.
            batch_size (`int`, *optional*, defaults to 1):
                Number of images to generate.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`paddle.Generator`, *optional*):
                One or a list of paddle generator(s) to make generation deterministic.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
        """

        if isinstance(image, PIL.Image.Image):
            batch_size = 1
        elif isinstance(image, paddle.Tensor):
            batch_size = image.shape[0]
        else:
            raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `paddle.Tensor` but is {type(image)}")

        if isinstance(image, PIL.Image.Image):
            image = preprocess(image)

        height, width = image.shape[-2:]

        # in_channels should be 6: 3 for latents, 3 for low resolution image
        latents_shape = (batch_size, self.unet.in_channels // 2, height, width)
        latents_dtype = next(self.unet.named_parameters())[1].dtype

        latents = paddle.randn(latents_shape, generator=generator, dtype=latents_dtype)

        image = image.cast(latents_dtype)

        self.scheduler.set_timesteps(num_inference_steps)
        timesteps_tensor = self.scheduler.timesteps

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_kwargs = {}
        if accepts_eta:
            extra_kwargs["eta"] = eta

        for t in self.progress_bar(timesteps_tensor):
            # concat latents and low resolution image in the channel dimension.
            latents_input = paddle.concat([latents, image], axis=1)
            latents_input = self.scheduler.scale_model_input(latents_input, t)
            # predict the noise residual
            noise_pred = self.unet(latents_input, t).sample
            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample

        # decode the image latents with the VQVAE
        image = self.vqvae.decode(latents).sample
        image = paddle.clip(image, -1.0, 1.0)
        image = image / 2 + 0.5
        image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)