Spaces:
Runtime error
Runtime error
File size: 28,969 Bytes
4902206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "K6KNj8R5pFOi",
"outputId": "73e388e8-294f-438d-ddc2-06ae7132580a"
},
"outputs": [],
"source": [
"!kaggle competitions download -c jigsaw-toxic-comment-classification-challenge\n",
"!unzip jigsaw-toxic-comment-classification-challenge"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-a6Sx13TqW2h",
"outputId": "eb6bb305-7b66-4f59-e1e3-24858c1309c4"
},
"outputs": [],
"source": [
"!unzip test.csv.zip \n",
"!unzip test_labels.csv.zip \n",
"!unzip train.csv.zip"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "Jt-aOqhVqavv"
},
"outputs": [],
"source": [
"import warnings\n",
"import pandas as pd\n",
"import torch\n",
"import numpy as np\n",
"from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler\n",
"from sklearn.model_selection import train_test_split\n",
"from transformers import Trainer, TrainingArguments\n",
"from transformers import AutoTokenizer, AutoModelForSequenceClassification"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mps:0\n"
]
}
],
"source": [
"# Use GPU\n",
"#device = \"cuda:0\" if torch.cuda.is_available() else \"cpu\"\n",
"device = \"mps:0\" if torch.backends.mps.is_available() else \"cpu\"\n",
"print(device)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "zMDF7x0H4VFW"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>comment_text</th>\n",
" <th>toxic</th>\n",
" <th>severe_toxic</th>\n",
" <th>obscene</th>\n",
" <th>threat</th>\n",
" <th>insult</th>\n",
" <th>identity_hate</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0000997932d777bf</td>\n",
" <td>Explanation\\nWhy the edits made under my usern...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id comment_text toxic \\\n",
"0 0000997932d777bf Explanation\\nWhy the edits made under my usern... 0 \n",
"\n",
" severe_toxic obscene threat insult identity_hate \n",
"0 0 0 0 0 0 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load training text and label dataset\n",
"# Preprocess data\n",
"\n",
"#test_texts = pd.read_csv(\"test.csv\").values.tolist()\n",
"#test_labels = pd.read_csv('test_labels.csv').values.tolist()\n",
"\n",
"train = pd.read_csv('train.csv')\n",
"train.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"159571 (159571, 8)\n",
"id False\n",
"comment_text False\n",
"toxic False\n",
"severe_toxic False\n",
"obscene False\n",
"threat False\n",
"insult False\n",
"identity_hate False\n",
"dtype: bool\n",
"False\n"
]
}
],
"source": [
"# Any duplicates?\n",
"print(len(train['comment_text'].unique()), train.shape)\n",
"\n",
"# Any missing values?\n",
"print(train.isnull().any())\n",
"print(train.isnull().values.any())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>comment_text</th>\n",
" <th>toxic</th>\n",
" <th>severe_toxic</th>\n",
" <th>obscene</th>\n",
" <th>threat</th>\n",
" <th>insult</th>\n",
" <th>identity_hate</th>\n",
" <th>grouped_labels</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0000997932d777bf</td>\n",
" <td>Explanation\\nWhy the edits made under my usern...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>[0, 0, 0, 0, 0, 0]</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id comment_text toxic \\\n",
"0 0000997932d777bf Explanation\\nWhy the edits made under my usern... 0 \n",
"\n",
" severe_toxic obscene threat insult identity_hate grouped_labels \n",
"0 0 0 0 0 0 [0, 0, 0, 0, 0, 0] "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Group labels to get right format for training\n",
"labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']\n",
"train['grouped_labels'] = train[labels].values.tolist()\n",
"train.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Convert to list from dataframe\n",
"train_texts = train['comment_text'].values.tolist()\n",
"train_labels = train['grouped_labels'].values.tolist()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "vkxJ6NkFlc46",
"tags": []
},
"outputs": [],
"source": [
"# Use distilbert, a faster model of BERT which keeps 95% of the performance\n",
"model_name = \"bert-base-uncased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 0, 1, 1, 0, 0] 11\n",
"[1, 1, 0, 1, 0, 0] 11\n",
"[1, 0, 0, 1, 0, 1] 7\n",
"[1, 1, 0, 0, 1, 1] 7\n",
"[1, 1, 1, 0, 0, 1] 6\n",
"[1, 1, 1, 1, 0, 0] 4\n",
"[0, 0, 0, 1, 1, 0] 3\n",
"[1, 0, 0, 1, 1, 1] 3\n",
"[1, 1, 0, 0, 0, 1] 3\n",
"[0, 0, 1, 0, 0, 1] 3\n",
"[0, 0, 1, 1, 0, 0] 2\n",
"[0, 0, 1, 1, 1, 0] 2\n",
"[1, 1, 0, 1, 1, 0] 1\n",
"[1, 1, 0, 1, 0, 1] 1\n",
"Name: grouped_labels, dtype: int64\n",
"df label indices with only one instance: [159029, 158498, 157010, 154553, 149180, 144159, 139501, 138026, 134459, 133505, 127410, 120395, 115766, 113304, 110056, 107881, 107096, 101089, 98699, 86746, 76454, 74607, 68264, 66350, 63687, 61934, 57594, 53408, 45101, 41461, 36141, 31191, 30566, 29445, 23374, 17187, 15977, 9487, 8979, 6316, 6063, 2374]\n"
]
}
],
"source": [
"# Also do preprocessing to see if there are any unique rows\n",
"# with that specfic combination of labels\n",
"# If that is the case, we want to include that row in the training data\n",
"\n",
"# Find unique label combinations\n",
"label_counts = train['grouped_labels'].astype(str).value_counts()\n",
"print(label_counts[-14:])\n",
"\n",
"# Take low frequency labels\n",
"low_freq = label_counts[label_counts<10].keys()\n",
"low_freq_inds = sorted(list(train[train['grouped_labels'].astype(str).isin(low_freq)].index), reverse=True)\n",
"print('df label indices with only one instance: ', low_freq_inds)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"low_freq_train_texts = [train_texts.pop(i) for i in low_freq_inds]\n",
"low_freq_train_labels = [train_labels.pop(i) for i in low_freq_inds]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Add low freq values to training data\n",
"train_texts.extend(low_freq_train_texts)\n",
"train_labels.extend(low_freq_train_labels)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# Split datasets for training\n",
"train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.1)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# Shorten token to increase training speed, average is below this\n",
"max_length = 100\n",
"train_encodings = tokenizer(train_texts, truncation=True, padding=True, return_tensors=\"pt\", max_length=max_length).to(device)\n",
"val_encodings = tokenizer(val_texts, truncation=True, padding=True, return_tensors=\"pt\", max_length=max_length).to(device)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"class ToxicDataset(Dataset):\n",
" def __init__(self, encodings, labels):\n",
" self.encodings = encodings\n",
" self.labels = [[float(y) for y in x] for x in labels]\n",
"\n",
" def __getitem__(self, idx):\n",
" item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}\n",
" item['labels'] = torch.tensor(self.labels[idx])\n",
" return item\n",
"\n",
" def __len__(self):\n",
" return len(self.labels)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"train_dataset = ToxicDataset(train_encodings, train_labels)\n",
"val_dataset = ToxicDataset(val_encodings, val_labels)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias']\n",
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"model = AutoModelForSequenceClassification.from_pretrained(model_name,\n",
" num_labels=6,\n",
" ).to(device)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": true,
"id": "CI2B0V5D27gA",
"jupyter": {
"outputs_hidden": true
},
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n",
"PyTorch: setting up devices\n",
"***** Running training *****\n",
" Num examples = 127656\n",
" Num Epochs = 1\n",
" Instantaneous batch size per device = 16\n",
" Total train batch size (w. parallel, distributed & accumulation) = 16\n",
" Gradient Accumulation steps = 1\n",
" Total optimization steps = 7979\n",
" Number of trainable parameters = 109486854\n"
]
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='33' max='7979' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [ 33/7979 00:21 < 1:33:06, 1.42 it/s, Epoch 0.00/1]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>10</td>\n",
" <td>0.605800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>20</td>\n",
" <td>0.590100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>30</td>\n",
" <td>0.550200</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[56], line 28\u001b[0m\n\u001b[1;32m 9\u001b[0m training_args \u001b[38;5;241m=\u001b[39m TrainingArgumentsWithMPSSupport(\n\u001b[1;32m 10\u001b[0m output_dir \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./results\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 11\u001b[0m num_train_epochs\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 18\u001b[0m logging_steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m,\n\u001b[1;32m 19\u001b[0m )\n\u001b[1;32m 21\u001b[0m trainer \u001b[38;5;241m=\u001b[39m Trainer(\n\u001b[1;32m 22\u001b[0m model\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[1;32m 23\u001b[0m args\u001b[38;5;241m=\u001b[39mtraining_args,\n\u001b[1;32m 24\u001b[0m train_dataset\u001b[38;5;241m=\u001b[39mtrain_dataset,\n\u001b[1;32m 25\u001b[0m eval_dataset\u001b[38;5;241m=\u001b[39mval_dataset,\n\u001b[1;32m 26\u001b[0m )\n\u001b[0;32m---> 28\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/trainer.py:1501\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_wrapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\n\u001b[1;32m 1498\u001b[0m inner_training_loop \u001b[38;5;241m=\u001b[39m find_executable_batch_size(\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_inner_training_loop, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_train_batch_size, args\u001b[38;5;241m.\u001b[39mauto_find_batch_size\n\u001b[1;32m 1500\u001b[0m )\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1503\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1504\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1505\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1506\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/trainer.py:1749\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 1747\u001b[0m tr_loss_step \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining_step(model, inputs)\n\u001b[1;32m 1748\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1749\u001b[0m tr_loss_step \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtraining_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1751\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 1752\u001b[0m args\u001b[38;5;241m.\u001b[39mlogging_nan_inf_filter\n\u001b[1;32m 1753\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_torch_tpu_available()\n\u001b[1;32m 1754\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (torch\u001b[38;5;241m.\u001b[39misnan(tr_loss_step) \u001b[38;5;129;01mor\u001b[39;00m torch\u001b[38;5;241m.\u001b[39misinf(tr_loss_step))\n\u001b[1;32m 1755\u001b[0m ):\n\u001b[1;32m 1756\u001b[0m \u001b[38;5;66;03m# if loss is nan or inf simply add the average of previous logged losses\u001b[39;00m\n\u001b[1;32m 1757\u001b[0m tr_loss \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m tr_loss \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mglobal_step \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_globalstep_last_logged)\n",
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/trainer.py:2526\u001b[0m, in \u001b[0;36mTrainer.training_step\u001b[0;34m(self, model, inputs)\u001b[0m\n\u001b[1;32m 2524\u001b[0m loss \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdeepspeed\u001b[38;5;241m.\u001b[39mbackward(loss)\n\u001b[1;32m 2525\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2526\u001b[0m \u001b[43mloss\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2528\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m loss\u001b[38;5;241m.\u001b[39mdetach()\n",
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/torch/_tensor.py:488\u001b[0m, in \u001b[0;36mTensor.backward\u001b[0;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[1;32m 478\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 479\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[1;32m 480\u001b[0m Tensor\u001b[38;5;241m.\u001b[39mbackward,\n\u001b[1;32m 481\u001b[0m (\u001b[38;5;28mself\u001b[39m,),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 486\u001b[0m inputs\u001b[38;5;241m=\u001b[39minputs,\n\u001b[1;32m 487\u001b[0m )\n\u001b[0;32m--> 488\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mautograd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 489\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\n\u001b[1;32m 490\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/torch/autograd/__init__.py:204\u001b[0m, in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[1;32m 199\u001b[0m retain_graph \u001b[38;5;241m=\u001b[39m create_graph\n\u001b[1;32m 201\u001b[0m \u001b[38;5;66;03m# The reason we repeat the same comment below is that\u001b[39;00m\n\u001b[1;32m 202\u001b[0m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[0;32m--> 204\u001b[0m \u001b[43mVariable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execution_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[1;32m 205\u001b[0m \u001b[43m \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 206\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"class TrainingArgumentsWithMPSSupport(TrainingArguments):\n",
" @property\n",
" def device(self) -> torch.device:\n",
" if torch.backends.mps.is_available():\n",
" return torch.device(\"mps\")\n",
" else:\n",
" return torch.device(\"cpu\")\n",
"\n",
"training_args = TrainingArgumentsWithMPSSupport(\n",
" output_dir = './results',\n",
" num_train_epochs=1,\n",
" per_device_train_batch_size=16,\n",
" per_device_eval_batch_size=16,\n",
" warmup_steps=500,\n",
" learning_rate=5e-5,\n",
" weight_decay=0.01,\n",
" logging_dir='./logs',\n",
" logging_steps=10,\n",
")\n",
"\n",
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=train_dataset,\n",
" eval_dataset=val_dataset,\n",
")\n",
"\n",
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Saving model checkpoint to ./model_checkpoint/done\n",
"Configuration saved in ./model_checkpoint/done/config.json\n",
"Model weights saved in ./model_checkpoint/done/pytorch_model.bin\n"
]
}
],
"source": [
"trainer.save_model('./model_checkpoint/done')"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from transformers import BertTokenizer, BertForSequenceClassification\n",
"#saved = DistilBertModel.from_pretrained('./model_checkpoint/trained', num_labels=6, problem_type=\"multi_label_classification\")\n",
"saved = BertForSequenceClassification.from_pretrained('./model_checkpoint/fine_tuned')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'trainer' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[19], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241m.\u001b[39mevaluate()\n",
"\u001b[0;31mNameError\u001b[0m: name 'trainer' is not defined"
]
}
],
"source": [
"trainer.evaluate()"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[[0.4601849317550659,\n",
" 0.0626736581325531,\n",
" 0.1962047964334488,\n",
" 0.0715285912156105,\n",
" 0.1363525241613388,\n",
" 0.0730554461479187]]"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text = \"fun\"\n",
"encoded_input = tokenizer(text, return_tensors=\"pt\")\n",
"outputs = saved(**encoded_input)\n",
"predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)\n",
"predictions = predictions.cpu().detach().numpy()\n",
"predictions.tolist()"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"res = [1 if x >= 0.5 else 0 for x in predictions[0]]"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[1, 0, 0, 0, 0, 0]"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|