File size: 28,969 Bytes
4902206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "K6KNj8R5pFOi",
    "outputId": "73e388e8-294f-438d-ddc2-06ae7132580a"
   },
   "outputs": [],
   "source": [
    "!kaggle competitions download -c jigsaw-toxic-comment-classification-challenge\n",
    "!unzip jigsaw-toxic-comment-classification-challenge"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "-a6Sx13TqW2h",
    "outputId": "eb6bb305-7b66-4f59-e1e3-24858c1309c4"
   },
   "outputs": [],
   "source": [
    "!unzip test.csv.zip  \n",
    "!unzip test_labels.csv.zip  \n",
    "!unzip train.csv.zip"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "id": "Jt-aOqhVqavv"
   },
   "outputs": [],
   "source": [
    "import warnings\n",
    "import pandas as pd\n",
    "import torch\n",
    "import numpy as np\n",
    "from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler\n",
    "from sklearn.model_selection import train_test_split\n",
    "from transformers import Trainer, TrainingArguments\n",
    "from transformers import AutoTokenizer, AutoModelForSequenceClassification"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "warnings.filterwarnings('ignore')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "mps:0\n"
     ]
    }
   ],
   "source": [
    "# Use GPU\n",
    "#device = \"cuda:0\" if torch.cuda.is_available() else \"cpu\"\n",
    "device = \"mps:0\" if torch.backends.mps.is_available() else \"cpu\"\n",
    "print(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "id": "zMDF7x0H4VFW"
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>comment_text</th>\n",
       "      <th>toxic</th>\n",
       "      <th>severe_toxic</th>\n",
       "      <th>obscene</th>\n",
       "      <th>threat</th>\n",
       "      <th>insult</th>\n",
       "      <th>identity_hate</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0000997932d777bf</td>\n",
       "      <td>Explanation\\nWhy the edits made under my usern...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                 id                                       comment_text  toxic  \\\n",
       "0  0000997932d777bf  Explanation\\nWhy the edits made under my usern...      0   \n",
       "\n",
       "   severe_toxic  obscene  threat  insult  identity_hate  \n",
       "0             0        0       0       0              0  "
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Load training text and label dataset\n",
    "# Preprocess data\n",
    "\n",
    "#test_texts = pd.read_csv(\"test.csv\").values.tolist()\n",
    "#test_labels = pd.read_csv('test_labels.csv').values.tolist()\n",
    "\n",
    "train = pd.read_csv('train.csv')\n",
    "train.head(1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "159571 (159571, 8)\n",
      "id               False\n",
      "comment_text     False\n",
      "toxic            False\n",
      "severe_toxic     False\n",
      "obscene          False\n",
      "threat           False\n",
      "insult           False\n",
      "identity_hate    False\n",
      "dtype: bool\n",
      "False\n"
     ]
    }
   ],
   "source": [
    "# Any duplicates?\n",
    "print(len(train['comment_text'].unique()), train.shape)\n",
    "\n",
    "# Any missing values?\n",
    "print(train.isnull().any())\n",
    "print(train.isnull().values.any())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>comment_text</th>\n",
       "      <th>toxic</th>\n",
       "      <th>severe_toxic</th>\n",
       "      <th>obscene</th>\n",
       "      <th>threat</th>\n",
       "      <th>insult</th>\n",
       "      <th>identity_hate</th>\n",
       "      <th>grouped_labels</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0000997932d777bf</td>\n",
       "      <td>Explanation\\nWhy the edits made under my usern...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>[0, 0, 0, 0, 0, 0]</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                 id                                       comment_text  toxic  \\\n",
       "0  0000997932d777bf  Explanation\\nWhy the edits made under my usern...      0   \n",
       "\n",
       "   severe_toxic  obscene  threat  insult  identity_hate      grouped_labels  \n",
       "0             0        0       0       0              0  [0, 0, 0, 0, 0, 0]  "
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Group labels to get right format for training\n",
    "labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']\n",
    "train['grouped_labels'] = train[labels].values.tolist()\n",
    "train.head(1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Convert to list from dataframe\n",
    "train_texts = train['comment_text'].values.tolist()\n",
    "train_labels = train['grouped_labels'].values.tolist()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "id": "vkxJ6NkFlc46",
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Use distilbert, a faster model of BERT which keeps 95% of the performance\n",
    "model_name = \"bert-base-uncased\"\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[1, 0, 1, 1, 0, 0]    11\n",
      "[1, 1, 0, 1, 0, 0]    11\n",
      "[1, 0, 0, 1, 0, 1]     7\n",
      "[1, 1, 0, 0, 1, 1]     7\n",
      "[1, 1, 1, 0, 0, 1]     6\n",
      "[1, 1, 1, 1, 0, 0]     4\n",
      "[0, 0, 0, 1, 1, 0]     3\n",
      "[1, 0, 0, 1, 1, 1]     3\n",
      "[1, 1, 0, 0, 0, 1]     3\n",
      "[0, 0, 1, 0, 0, 1]     3\n",
      "[0, 0, 1, 1, 0, 0]     2\n",
      "[0, 0, 1, 1, 1, 0]     2\n",
      "[1, 1, 0, 1, 1, 0]     1\n",
      "[1, 1, 0, 1, 0, 1]     1\n",
      "Name: grouped_labels, dtype: int64\n",
      "df label indices with only one instance:  [159029, 158498, 157010, 154553, 149180, 144159, 139501, 138026, 134459, 133505, 127410, 120395, 115766, 113304, 110056, 107881, 107096, 101089, 98699, 86746, 76454, 74607, 68264, 66350, 63687, 61934, 57594, 53408, 45101, 41461, 36141, 31191, 30566, 29445, 23374, 17187, 15977, 9487, 8979, 6316, 6063, 2374]\n"
     ]
    }
   ],
   "source": [
    "# Also do preprocessing to see if there are any unique rows\n",
    "# with that specfic combination of labels\n",
    "# If that is the case, we want to include that row in the training data\n",
    "\n",
    "# Find unique label combinations\n",
    "label_counts = train['grouped_labels'].astype(str).value_counts()\n",
    "print(label_counts[-14:])\n",
    "\n",
    "# Take low frequency labels\n",
    "low_freq = label_counts[label_counts<10].keys()\n",
    "low_freq_inds = sorted(list(train[train['grouped_labels'].astype(str).isin(low_freq)].index), reverse=True)\n",
    "print('df label indices with only one instance: ', low_freq_inds)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "low_freq_train_texts = [train_texts.pop(i) for i in low_freq_inds]\n",
    "low_freq_train_labels = [train_labels.pop(i) for i in low_freq_inds]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Add low freq values to training data\n",
    "train_texts.extend(low_freq_train_texts)\n",
    "train_labels.extend(low_freq_train_labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Split datasets for training\n",
    "train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Shorten token to increase training speed, average is below this\n",
    "max_length = 100\n",
    "train_encodings = tokenizer(train_texts, truncation=True, padding=True, return_tensors=\"pt\", max_length=max_length).to(device)\n",
    "val_encodings = tokenizer(val_texts, truncation=True, padding=True, return_tensors=\"pt\", max_length=max_length).to(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "class ToxicDataset(Dataset):\n",
    "  def __init__(self, encodings, labels):\n",
    "    self.encodings = encodings\n",
    "    self.labels = [[float(y) for y in x] for x in labels]\n",
    "\n",
    "  def __getitem__(self, idx):\n",
    "    item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}\n",
    "    item['labels'] = torch.tensor(self.labels[idx])\n",
    "    return item\n",
    "\n",
    "  def __len__(self):\n",
    "    return len(self.labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "train_dataset = ToxicDataset(train_encodings, train_labels)\n",
    "val_dataset = ToxicDataset(val_encodings, val_labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias']\n",
      "- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
      "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    }
   ],
   "source": [
    "model = AutoModelForSequenceClassification.from_pretrained(model_name,\n",
    "                                                           num_labels=6,\n",
    "                                                          ).to(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {
    "collapsed": true,
    "id": "CI2B0V5D27gA",
    "jupyter": {
     "outputs_hidden": true
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n",
      "PyTorch: setting up devices\n",
      "***** Running training *****\n",
      "  Num examples = 127656\n",
      "  Num Epochs = 1\n",
      "  Instantaneous batch size per device = 16\n",
      "  Total train batch size (w. parallel, distributed & accumulation) = 16\n",
      "  Gradient Accumulation steps = 1\n",
      "  Total optimization steps = 7979\n",
      "  Number of trainable parameters = 109486854\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='33' max='7979' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [  33/7979 00:21 < 1:33:06, 1.42 it/s, Epoch 0.00/1]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Step</th>\n",
       "      <th>Training Loss</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>10</td>\n",
       "      <td>0.605800</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>20</td>\n",
       "      <td>0.590100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>30</td>\n",
       "      <td>0.550200</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[56], line 28\u001b[0m\n\u001b[1;32m      9\u001b[0m training_args \u001b[38;5;241m=\u001b[39m TrainingArgumentsWithMPSSupport(\n\u001b[1;32m     10\u001b[0m     output_dir \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./results\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m     11\u001b[0m     num_train_epochs\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     18\u001b[0m     logging_steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m,\n\u001b[1;32m     19\u001b[0m )\n\u001b[1;32m     21\u001b[0m trainer \u001b[38;5;241m=\u001b[39m Trainer(\n\u001b[1;32m     22\u001b[0m     model\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[1;32m     23\u001b[0m     args\u001b[38;5;241m=\u001b[39mtraining_args,\n\u001b[1;32m     24\u001b[0m     train_dataset\u001b[38;5;241m=\u001b[39mtrain_dataset,\n\u001b[1;32m     25\u001b[0m     eval_dataset\u001b[38;5;241m=\u001b[39mval_dataset,\n\u001b[1;32m     26\u001b[0m )\n\u001b[0;32m---> 28\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/trainer.py:1501\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_wrapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\n\u001b[1;32m   1498\u001b[0m inner_training_loop \u001b[38;5;241m=\u001b[39m find_executable_batch_size(\n\u001b[1;32m   1499\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_inner_training_loop, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_train_batch_size, args\u001b[38;5;241m.\u001b[39mauto_find_batch_size\n\u001b[1;32m   1500\u001b[0m )\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[43m    \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1503\u001b[0m \u001b[43m    \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1504\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1505\u001b[0m \u001b[43m    \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1506\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/trainer.py:1749\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m   1747\u001b[0m         tr_loss_step \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining_step(model, inputs)\n\u001b[1;32m   1748\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1749\u001b[0m     tr_loss_step \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtraining_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1751\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m   1752\u001b[0m     args\u001b[38;5;241m.\u001b[39mlogging_nan_inf_filter\n\u001b[1;32m   1753\u001b[0m     \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_torch_tpu_available()\n\u001b[1;32m   1754\u001b[0m     \u001b[38;5;129;01mand\u001b[39;00m (torch\u001b[38;5;241m.\u001b[39misnan(tr_loss_step) \u001b[38;5;129;01mor\u001b[39;00m torch\u001b[38;5;241m.\u001b[39misinf(tr_loss_step))\n\u001b[1;32m   1755\u001b[0m ):\n\u001b[1;32m   1756\u001b[0m     \u001b[38;5;66;03m# if loss is nan or inf simply add the average of previous logged losses\u001b[39;00m\n\u001b[1;32m   1757\u001b[0m     tr_loss \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m tr_loss \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mglobal_step \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_globalstep_last_logged)\n",
      "File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/trainer.py:2526\u001b[0m, in \u001b[0;36mTrainer.training_step\u001b[0;34m(self, model, inputs)\u001b[0m\n\u001b[1;32m   2524\u001b[0m     loss \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdeepspeed\u001b[38;5;241m.\u001b[39mbackward(loss)\n\u001b[1;32m   2525\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2526\u001b[0m     \u001b[43mloss\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   2528\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m loss\u001b[38;5;241m.\u001b[39mdetach()\n",
      "File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/torch/_tensor.py:488\u001b[0m, in \u001b[0;36mTensor.backward\u001b[0;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[1;32m    478\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m    479\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[1;32m    480\u001b[0m         Tensor\u001b[38;5;241m.\u001b[39mbackward,\n\u001b[1;32m    481\u001b[0m         (\u001b[38;5;28mself\u001b[39m,),\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    486\u001b[0m         inputs\u001b[38;5;241m=\u001b[39minputs,\n\u001b[1;32m    487\u001b[0m     )\n\u001b[0;32m--> 488\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mautograd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    489\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\n\u001b[1;32m    490\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/torch/autograd/__init__.py:204\u001b[0m, in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[1;32m    199\u001b[0m     retain_graph \u001b[38;5;241m=\u001b[39m create_graph\n\u001b[1;32m    201\u001b[0m \u001b[38;5;66;03m# The reason we repeat the same comment below is that\u001b[39;00m\n\u001b[1;32m    202\u001b[0m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[1;32m    203\u001b[0m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[0;32m--> 204\u001b[0m \u001b[43mVariable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execution_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m  \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[1;32m    205\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    206\u001b[0m \u001b[43m    \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "class TrainingArgumentsWithMPSSupport(TrainingArguments):\n",
    "    @property\n",
    "    def device(self) -> torch.device:\n",
    "        if torch.backends.mps.is_available():\n",
    "            return torch.device(\"mps\")\n",
    "        else:\n",
    "            return torch.device(\"cpu\")\n",
    "\n",
    "training_args = TrainingArgumentsWithMPSSupport(\n",
    "    output_dir = './results',\n",
    "    num_train_epochs=1,\n",
    "    per_device_train_batch_size=16,\n",
    "    per_device_eval_batch_size=16,\n",
    "    warmup_steps=500,\n",
    "    learning_rate=5e-5,\n",
    "    weight_decay=0.01,\n",
    "    logging_dir='./logs',\n",
    "    logging_steps=10,\n",
    ")\n",
    "\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=train_dataset,\n",
    "    eval_dataset=val_dataset,\n",
    ")\n",
    "\n",
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Saving model checkpoint to ./model_checkpoint/done\n",
      "Configuration saved in ./model_checkpoint/done/config.json\n",
      "Model weights saved in ./model_checkpoint/done/pytorch_model.bin\n"
     ]
    }
   ],
   "source": [
    "trainer.save_model('./model_checkpoint/done')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from transformers import BertTokenizer, BertForSequenceClassification\n",
    "#saved = DistilBertModel.from_pretrained('./model_checkpoint/trained', num_labels=6, problem_type=\"multi_label_classification\")\n",
    "saved = BertForSequenceClassification.from_pretrained('./model_checkpoint/fine_tuned')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'trainer' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[19], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241m.\u001b[39mevaluate()\n",
      "\u001b[0;31mNameError\u001b[0m: name 'trainer' is not defined"
     ]
    }
   ],
   "source": [
    "trainer.evaluate()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[[0.4601849317550659,\n",
       "  0.0626736581325531,\n",
       "  0.1962047964334488,\n",
       "  0.0715285912156105,\n",
       "  0.1363525241613388,\n",
       "  0.0730554461479187]]"
      ]
     },
     "execution_count": 59,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "text = \"fun\"\n",
    "encoded_input = tokenizer(text, return_tensors=\"pt\")\n",
    "outputs = saved(**encoded_input)\n",
    "predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)\n",
    "predictions = predictions.cpu().detach().numpy()\n",
    "predictions.tolist()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [],
   "source": [
    "res = [1 if x >= 0.5 else 0 for x in predictions[0]]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[1, 0, 0, 0, 0, 0]"
      ]
     },
     "execution_count": 49,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "res"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}