File size: 35,324 Bytes
56afa1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# ---------------------------------------------------------------
import torch
import torch.nn as nn
from functools import partial
import math
from itertools import repeat
import collections.abc
from typing import Tuple, Union
from monai.networks.blocks import PatchEmbed, UnetOutBlock, UnetrBasicBlock, UnetrUpBlock, UnetrPrUpBlock
from monai.networks.blocks.dynunet_block import get_conv_layer

# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))
    return parse

to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple

def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        print("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor

#%%
class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        x = self.fc1(x)
        x = self.dwconv(x, H, W)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        else:
            kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.drop_path = nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.mlp(self.norm2(x), H, W))

        return x
#%%

class OverlapPatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
        self.norm = nn.LayerNorm(embed_dim)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x):
        x = self.proj(x) # [2, 3, 224, 224]-> [2, 64, 56, 56]
        # print(f"{x.shape=}")
        _, _, H, W = x.shape
        x = x.flatten(2).transpose(1, 2) # [2, 64, 56, 56]-> [2, 3136, 64]
        # print(f"{x.shape=}")
        x = self.norm(x) # [2, 3136, 64]-> [2, 3136, 64]
        # print(f"{x.shape=}")

        return x, H, W

# embed_dims=[64, 128, 256, 512]
# patch_embed1 = OverlapPatchEmbed(img_size=224,patch_size=7,stride=4,in_chans=in_chans, embed_dim=64)
# x1, H, W = patch_embed1(input_img)
# x1 = x1.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
# patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
#                                       embed_dim=embed_dims[1])
# x2, H, W = patch_embed2(x1)
# x2 = x2.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()

# patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
#                                       embed_dim=embed_dims[2])
# x3, H, W = patch_embed3(x2)
# x3 = x3.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()

# patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],embed_dim=embed_dims[3])
# x4, H, W = patch_embed4(x3)
# x4 = x4.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()                                  
#%%

class MixVisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dims=[64, 128, 256, 512],
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
        super().__init__()
        # self.num_classes = num_classes
        self.depths = depths

        # patch_embed
        self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
                                              embed_dim=embed_dims[0])
        self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
                                              embed_dim=embed_dims[1])
        self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
                                              embed_dim=embed_dims[2])
        self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
                                              embed_dim=embed_dims[3])

        # transformer encoder
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
        self.block1 = nn.ModuleList([Block(
            dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[0])
            for i in range(depths[0])])
        self.norm1 = norm_layer(embed_dims[0])

        cur += depths[0]
        self.block2 = nn.ModuleList([Block(
            dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[1])
            for i in range(depths[1])])
        self.norm2 = norm_layer(embed_dims[1])

        cur += depths[1]
        self.block3 = nn.ModuleList([Block(
            dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[2])
            for i in range(depths[2])])
        self.norm3 = norm_layer(embed_dims[2])

        cur += depths[2]
        self.block4 = nn.ModuleList([Block(
            dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[3])
            for i in range(depths[3])])
        self.norm4 = norm_layer(embed_dims[3])

        # classification head
        # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            # logger = get_root_logger()
            # load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
            # load_checkpoint(self, pretrained, map_location='cpu', strict=False)
            torch.load(pretrained, map_location='cpu')

    def reset_drop_path(self, drop_path_rate):
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
        cur = 0
        for i in range(self.depths[0]):
            self.block1[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[0]
        for i in range(self.depths[1]):
            self.block2[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[1]
        for i in range(self.depths[2]):
            self.block3[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[2]
        for i in range(self.depths[3]):
            self.block4[i].drop_path.drop_prob = dpr[cur + i]

    def freeze_patch_emb(self):
        self.patch_embed1.requires_grad = False

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better

    def get_classifier(self):
        return self.head

    # def reset_classifier(self, num_classes, global_pool=''):
    #     self.num_classes = num_classes
    #     self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        B = x.shape[0]
        outs = []

        # stage 1
        x, H, W = self.patch_embed1(x)
        for i, blk in enumerate(self.block1):
            x = blk(x, H, W)
        x = self.norm1(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        # stage 2
        x, H, W = self.patch_embed2(x)
        for i, blk in enumerate(self.block2):
            x = blk(x, H, W)
        x = self.norm2(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        # stage 3
        x, H, W = self.patch_embed3(x)
        for i, blk in enumerate(self.block3):
            x = blk(x, H, W)
        x = self.norm3(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        # stage 4
        x, H, W = self.patch_embed4(x)
        for i, blk in enumerate(self.block4):
            x = blk(x, H, W)
        x = self.norm4(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        return outs

    def forward(self, x):
        x = self.forward_features(x)
        # x = self.head(x)

        return x


class DWConv(nn.Module):
    def __init__(self, dim=768):
        super(DWConv, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)

    def forward(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(1, 2).view(B, C, H, W)
        x = self.dwconv(x)
        x = x.flatten(2).transpose(1, 2)
        return x




class mit_b0(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b0, self).__init__(
            patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)



class mit_b1(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b1, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


class mit_b2(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b2, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)



class mit_b3(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b3, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)



class mit_b4(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b4, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)



class mit_b5(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b5, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


#%% B2
class MiT_B2_UNet_MultiHead(nn.Module):
    def __init__(self, 
                in_channels: int,
                out_channels: int,
                regress_class: int = 1, 
                img_size: Tuple[int, int] = (256,256),
                
                feature_size: int = 16,
                spatial_dims: int = 2,
                # hidden_size: int = 768,
                # mlp_dim: int = 3072,
                num_heads = [1, 2, 4, 8],
                # pos_embed: str = "perceptron",
                norm_name: Union[Tuple, str] = "instance",
                conv_block: bool = False,
                res_block: bool = True,
                dropout_rate: float = 0.0,
                debug: bool = False                 
                 ):
        super().__init__()
        self.debug = debug
        self.mit_b3 = MixVisionTransformer(img_size=img_size, patch_size=4, embed_dims=[feature_size*2, feature_size*4, feature_size*8, feature_size*16], 
                                           num_heads=num_heads, mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), 
                                           depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1)
        
        self.encoder1 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=in_channels,
            out_channels=feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )

        self.encoder2 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=2 * feature_size,
            out_channels=2 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )

        self.encoder3 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=4 * feature_size,
            out_channels=4 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )

        self.encoder4 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=8 * feature_size,
            out_channels=8 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )        

        self.encoder5 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=16 * feature_size,
            out_channels=16 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )   

        self.decoder4 = UnetrUpBlock(
            spatial_dims=2,
            in_channels=feature_size * 16,
            out_channels=feature_size * 8,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder3 = UnetrUpBlock(
            spatial_dims=2,
            in_channels=feature_size * 8,
            out_channels=feature_size * 4,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder2 = UnetrUpBlock(
            spatial_dims=2,
            in_channels=feature_size * 4,
            out_channels=feature_size * 2,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        
        self.transp_conv = get_conv_layer(
            spatial_dims=2,
            in_channels=feature_size*2,
            out_channels=feature_size*2,
            kernel_size=3,
            stride=2,
            conv_only=True,
            is_transposed=True,
        )
        self.decoder1 = UnetrUpBlock(
            spatial_dims=2,
            in_channels=feature_size * 2,
            out_channels=feature_size,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        
        self.out_interior = UnetOutBlock(spatial_dims=2, in_channels=feature_size, out_channels=out_channels)  # type: ignore
        self.out_dist = UnetOutBlock(spatial_dims=2, in_channels=feature_size, out_channels=1)  # type: ignore

    def forward(self, x_in):
        hidden_states_out = self.mit_b3(x_in) # x: (B, 256,768), hidden_states_out: list, 12 elements, (B,256,768)
        enc1 = self.encoder1(x_in) # (B, 16, 256, 256)
        x1 = hidden_states_out[0] # (B, 32, 64, 64)
        enc2 = self.encoder2(x1) # (B, 64, 32, 32)
        x2 = hidden_states_out[1] # (B, 64, 32, 32)
        enc3 = self.encoder3(x2) # (B, 128, 16, 16)
        x3 = hidden_states_out[2] # (B, 128, 16,16)
        enc4 = self.encoder4(x3) # (B, 256, 8, 8)
        x4 = hidden_states_out[3] # (B, 256, 8, 8)
        enc5 = self.encoder5(x4) # (B, 256, 8, 8)
        # print(f"{enc1.shape=}, {enc2.shape=}, {enc3.shape=}, {enc4.shape=}, {enc5.shape=}")
        
        dec4 = self.decoder4(enc5, enc4) # (B, 128, 16, 16);  up -> cat -> ResConv; (B, 128, 16, 16)
        dec3 = self.decoder3(dec4, enc3) # (B, 64, 32, 32)
        dec2 = self.decoder2(dec3, enc2) # (B, 32, 64, 64)
        dec2_up = self.transp_conv(dec2) # [B, 32, 128, 128]
        dec1 = self.decoder1(dec2_up, enc1) # (B, 16, 256, 256)
        logits = self.out_interior(dec1)
        dist = self.out_dist(dec1)
        
        if self.debug:
            return hidden_states_out, enc1, enc2, enc3, enc4, dec4, dec3, dec2, dec1, logits 
        else:
            return logits, dist

        # print(f"{dec1.shape=}, {dec2.shape=}, {dec3.shape=}, {dec4.shape=}, {logits.shape=}")

img_size = 256
in_chans = 3
B = 2
input_img = torch.randn((B,in_chans,img_size,img_size))

b2 = MiT_B2_UNet_MultiHead(3, 3, img_size=img_size)
logits, dist = b2(input_img)


#%% B3
class MiT_B3_UNet_MultiHead(nn.Module):
    def __init__(self, 
                in_channels: int,
                out_channels: int,
                regress_class: int = 1, 
                img_size: Tuple[int, int] = (256,256),
                
                feature_size: int = 16,
                spatial_dims: int = 2,
                # hidden_size: int = 768,
                # mlp_dim: int = 3072,
                num_heads = [1, 2, 4, 8],
                # pos_embed: str = "perceptron",
                norm_name: Union[Tuple, str] = "instance",
                conv_block: bool = False,
                res_block: bool = True,
                dropout_rate: float = 0.0,
                debug: bool = False                 
                 ):
        super().__init__()
        self.debug = debug
        self.mit_b3 = MixVisionTransformer(img_size=img_size, patch_size=4, embed_dims=[feature_size*2, feature_size*4, feature_size*8, feature_size*16], 
                                           num_heads=num_heads, mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
                                           drop_rate=0.0, drop_path_rate=0.1)
        
        self.encoder1 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=in_channels,
            out_channels=feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )

        self.encoder2 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=2 * feature_size,
            out_channels=2 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )

        self.encoder3 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=4 * feature_size,
            out_channels=4 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )

        self.encoder4 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=8 * feature_size,
            out_channels=8 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )        

        self.encoder5 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=16 * feature_size,
            out_channels=16 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=True,
        )   

        self.decoder4 = UnetrUpBlock(
            spatial_dims=2,
            in_channels=feature_size * 16,
            out_channels=feature_size * 8,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder3 = UnetrUpBlock(
            spatial_dims=2,
            in_channels=feature_size * 8,
            out_channels=feature_size * 4,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder2 = UnetrUpBlock(
            spatial_dims=2,
            in_channels=feature_size * 4,
            out_channels=feature_size * 2,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        
        self.transp_conv = get_conv_layer(
            spatial_dims=2,
            in_channels=feature_size*2,
            out_channels=feature_size*2,
            kernel_size=3,
            stride=2,
            conv_only=True,
            is_transposed=True,
        )
        self.decoder1 = UnetrUpBlock(
            spatial_dims=2,
            in_channels=feature_size * 2,
            out_channels=feature_size,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        
        self.out_interior = UnetOutBlock(spatial_dims=2, in_channels=feature_size, out_channels=out_channels)  # type: ignore
        self.out_dist = UnetOutBlock(spatial_dims=2, in_channels=feature_size, out_channels=1)  # type: ignore

    def forward(self, x_in):
        hidden_states_out = self.mit_b3(x_in) # x: (B, 256,768), hidden_states_out: list, 12 elements, (B,256,768)
        enc1 = self.encoder1(x_in) # (B, 16, 256, 256)
        x1 = hidden_states_out[0] # (B, 32, 64, 64)
        enc2 = self.encoder2(x1) # (B, 64, 32, 32)
        x2 = hidden_states_out[1] # (B, 64, 32, 32)
        enc3 = self.encoder3(x2) # (B, 128, 16, 16)
        x3 = hidden_states_out[2] # (B, 128, 16,16)
        enc4 = self.encoder4(x3) # (B, 256, 8, 8)
        x4 = hidden_states_out[3] # (B, 256, 8, 8)
        enc5 = self.encoder5(x4) # (B, 256, 8, 8)
        # print(f"{enc1.shape=}, {enc2.shape=}, {enc3.shape=}, {enc4.shape=}, {enc5.shape=}")
        
        dec4 = self.decoder4(enc5, enc4) # (B, 128, 16, 16);  up -> cat -> ResConv; (B, 128, 16, 16)
        dec3 = self.decoder3(dec4, enc3) # (B, 64, 32, 32)
        dec2 = self.decoder2(dec3, enc2) # (B, 32, 64, 64)
        dec2_up = self.transp_conv(dec2) # [B, 32, 128, 128]
        dec1 = self.decoder1(dec2_up, enc1) # (B, 16, 256, 256)
        logits = self.out_interior(dec1)
        dist = self.out_dist(dec1)
        
        if self.debug:
            return hidden_states_out, enc1, enc2, enc3, enc4, dec4, dec3, dec2, dec1, logits 
        else:
            return logits, dist

        # print(f"{dec1.shape=}, {dec2.shape=}, {dec3.shape=}, {dec4.shape=}, {logits.shape=}")



#%% head
class MLPEmbedding(nn.Module):
    """
    Linear Embedding
    used in head
    """
    def __init__(self, input_dim=2048, embed_dim=768):
        super().__init__()
        self.proj = nn.Linear(input_dim, embed_dim)

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)
        x = self.proj(x)
        return x

class All_MLP_Head(nn.Module):
    """
    All MLP head in segformer
    Simple and Efficient Design for Semantic Segmentation with Transformers
    """
    def __init__(self, in_channels=[64,128,320,512], # channel number of multi-scale features
                 in_index=[0,1,2,3], 
                 feature_strides=[4,8,16,32],
                 dropout_ratio=0.1,
                 num_classes=3, 
                 embedding_dim=768,
                 output_hidden_states=False):
        super().__init__()
        self.in_channels = in_channels
        assert len(feature_strides) == len(self.in_channels)
        assert min(feature_strides) == feature_strides[0]
        self.in_index = in_index
        self.feature_strides = feature_strides
        self.dropout_ratio = dropout_ratio
        self.num_classes = num_classes
        self.output_hidden_states = output_hidden_states

        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels

        # unify channel number to 768
        self.linear_c4 = MLPEmbedding(input_dim=c4_in_channels, embed_dim=embedding_dim) 
        self.linear_c3 = MLPEmbedding(input_dim=c3_in_channels, embed_dim=embedding_dim)
        self.linear_c2 = MLPEmbedding(input_dim=c2_in_channels, embed_dim=embedding_dim)
        self.linear_c1 = MLPEmbedding(input_dim=c1_in_channels, embed_dim=embedding_dim)
        
        self.linear_fuse = nn.Conv2d(in_channels=embedding_dim*4, out_channels=embedding_dim, kernel_size=1,bias=False)
        self.batch_norm = nn.BatchNorm2d(embedding_dim) # 4: number of blocks
        self.activation = nn.ReLU()
        if dropout_ratio>0:
            self.dropout = nn.Dropout2d(self.dropout_ratio)
        self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1)

    def forward(self, inputs):
        # x = self._transform_inputs(inputs)  # len=4, 1/4,1/8,1/16,1/32
        c1, c2, c3, c4 = inputs

        ############## MLP decoder on C1-C4 ###########
        n, _, h, w = c4.shape
        # normalize channel number and resample to 1/4 HxW
        _c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3])
        _c4 = nn.functional.interpolate(_c4, size=c1.size()[2:], mode='bilinear',align_corners=False)

        _c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3])
        _c3 = nn.functional.interpolate(_c3, size=c1.size()[2:], mode='bilinear',align_corners=False)

        _c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3])
        _c2 = nn.functional.interpolate(_c2, size=c1.size()[2:], mode='bilinear',align_corners=False)

        _c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3])

        # concatenate features
        hidden_states = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))
        hidden_states = self.batch_norm(hidden_states)
        hidden_states = self.activation(hidden_states)
        hidden_states = self.dropout(hidden_states)
        # predict results
        x = self.linear_pred(hidden_states)
        if self.output_hidden_states:
            return x, hidden_states
        else:
            return x



#%% test different networks
# img_size = 256
# in_chans = 3
# B = 2
# input_img = torch.randn((B,in_chans,img_size,img_size))

# b3 = mit_b3_demo(img_size=img_size)
# b3_out = b3(input_img)
# for feature in b3_out:
#     print(f"{feature.shape=}")
# head = All_MLP_Head()
# outputs = head(b3_out)
# print(f"{outputs.shape = }")