Spaces:
Sleeping
Sleeping
File size: 10,850 Bytes
5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 d77386f 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 52d303b 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 bfc0917 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 d77386f 5103cb0 d77386f 5103cb0 d77386f 5887a43 5103cb0 5887a43 5103cb0 5887a43 5103cb0 5887a43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import subprocess
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma, FAISS
from langchain.embeddings import FastEmbedEmbeddings # General embeddings from HuggingFace models.
from langchain.memory import ConversationBufferMemory
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks import StreamlitCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from htmlTemplates import css, bot_template, user_template
from langchain.llms import LlamaCpp, OpenAI, GooglePalm # For loading transformer models.
from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain import hub
import tempfile
import os
import glob
import shutil
import time
# TEXT LOADERS
def get_pdf_text(pdf_docs):
"""
Purpose: A hypothetical loader for PDF files in Python.
Usage: Used to extract text or other information from PDF documents.
Load Function: A load_pdf function might be used to read and extract data from a PDF file.
input : pdf document path
returns : extracted text
"""
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name)
with open(temp_filepath, "wb") as f:
f.write(pdf_docs.getvalue())
pdf_loader = PyPDFLoader(temp_filepath)
pdf_doc = pdf_loader.load()
return pdf_doc
def get_text_file(text_docs):
"""
"""
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, text_docs.name)
with open(temp_filepath, "wb") as f:
f.write(text_docs.getvalue())
text_loader = TextLoader(temp_filepath)
text_doc = text_loader.load()
return text_doc
def get_csv_file(csv_docs):
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, csv_docs.name)
with open(temp_filepath, "wb") as f:
f.write(csv_docs.getvalue())
csv_loader = CSVLoader(temp_filepath)
csv_doc = csv_loader.load()
return csv_doc
# Break the documents into chunks
def get_text_chunks(documents):
"""
For the compute purpose we will split the document into multiple smaller chunks.
IMPORTANT : If the chunks too small we will miss the context and if its too large we will have longer compute time
"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size= 1000,
chunk_overlap=200,
)
text_chunks = text_splitter.split_documents(documents)
return text_chunks
# Save chunks to vector store
def get_vectorstore(text_chunks):
"""
Load our vectors into chroma DB, Googles Vector Store
"""
vectorstore = Chroma.from_documents(documents= text_chunks,
embedding= st.session_state.embeddings,
persist_directory= "./vectordb/")
return vectorstore
# Bind the Vector DB, Large Language models and Embedding models all into one container
def get_conversation_chain(vectorstore):
"""
This is a langchain model where we will be binding the runner to infer data from LLM
"""
model_path = st.session_state.model
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
if st.session_state.model == "Google_PaLm" :
llm = GooglePalm(google_api_key = "AIzaSyAIo7rw6iJPWpkpOXSJk6BnuOKNSaB5muM",
max_output_tokens = 4000,
callback_manager=callback_manager)
elif st.session_state.model == "Open_AIGPT-3.5-Turbo":
llm = OpenAI(api_key = "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",
callback_manager = callback_manager,
max_tokens= 4000 )
else:
llm = LlamaCpp(model_path= model_path,
n_ctx= 4000,
max_tokens= 4000,
f16_kv = True,
callback_manager = callback_manager,
verbose=True)
prompt_template = """You are a personal HR Bot assistant for answering any questions about Companies policies
You are given a question and a set of documents.
If the user's question requires you to provide specific information from the documents, give your answer based only on the examples provided below. DON'T generate an answer that is NOT written in the provided examples.
If you don't find the answer to the user's question with the examples provided to you below, answer that you didn't find the answer in the documentation and propose him to rephrase his query with more details.
Use bullet points if you have to make a list, only if necessary. Use 'DOCUMENTS' as a reference point, to understand and give a consciese output in 3 or 5 sentences.
QUESTION: {question}
DOCUMENTS:
=========
{context}
=========
Finish by proposing your help for anything else.
"""
rag_prompt_custom = PromptTemplate.from_template(prompt_template)
# prompt = hub.pull("rlm/rag-prompt")
prompt = hub.pull("rlm/rag-prompt-mistral")
conversation_chain = RetrievalQA.from_chain_type(
llm,
retriever= vectorstore.as_retriever(),
chain_type_kwargs={"prompt": prompt},
)
conversation_chain.callback_manager = callback_manager
conversation_chain.memory = ConversationBufferMemory()
return conversation_chain
# an stream lit interface to handle and save our chats
def handle_userinput():
clear = False
# Add clear chat button
if st.button("Clear Chat history"):
clear = True
st.session_state.messages = []
# initialise our stream lit chat interface
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "How can I help you?"}]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Clear the cash memory
if clear:
st.session_state.conversation.memory.clear()
clear = False
if prompt := st.chat_input():
with st.chat_message("user"):
st.markdown(prompt)
# add user question to chat history
st.session_state.messages.append( {"role": "user", "content": prompt})
with st.chat_message("assistant"):
# set up a call back handler
st_callback = StreamlitCallbackHandler(st.container())
message_holder = st.empty()
full_response = ""
# streamlit call back manager
st.session_state.conversation.callback_manager = st_callback
msg = st.session_state.conversation.run(prompt)
#st.markdown(msg)
for chunk in msg.split():
full_response += chunk + " "
time.sleep(0.09)
# add a blinking cursor to simulate typing
message_holder.markdown(full_response + "βοΈ ")
# Display the responce
message_holder.info(full_response)
# add responce to session state
st.session_state.messages.append({"role": "assistant", "content": full_response})
# Function to apply rounded edges using CSS
def add_rounded_edges(image_path="./randstad_featuredimage.png", radius=30):
st.markdown(
f'<style>.rounded-img{{border-radius: {radius}px; overflow: hidden;}}</style>',
unsafe_allow_html=True,)
st.image(image_path, use_column_width=True, output_format='auto')
def main():
st.set_page_config(page_title="RANDSTAD",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.title("π¬ Randstad HR Chatbot")
st.subheader("π A HR powered by Generative AI")
# default model
st.session_state.model = "Google_PaLm"
# user_question = st.text_input("Ask a question about your documents:")
st.session_state.embeddings = FastEmbedEmbeddings( model_name= "BAAI/bge-base-en-v1.5", cache_dir="./embedding_model/")
if len(glob.glob("./vectordb/*.sqlite3")) > 0 :
vectorstore = Chroma(persist_directory="./vectordb/", embedding_function=st.session_state.embeddings)
st.session_state.conversation = get_conversation_chain(vectorstore)
handle_userinput()
# side bar information
with st.sidebar:
# calling a
add_rounded_edges()
st.subheader("Select Your Embedding Model Model")
LLM = list( glob.glob('./models/*.gguf') )
LLM.extend(["Open_AIGPT-3.5-Turbo", "Google_PaLm"])
st.session_state.model = st.selectbox( 'Models', LLM )
st.subheader("Your documents")
docs = st.file_uploader(
"Upload File (pdf,text,csv...) and click 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
doc_list = []
# using the helper function below lets load our dependencies
# Step 1 : Load the documents
for file in docs:
print('file - type : ', file.type)
if file.type == 'text/plain':
# file is .txt
doc_list.extend(get_text_file(file))
elif file.type in ['application/octet-stream', 'application/pdf']:
# file is .pdf
doc_list.extend(get_pdf_text(file))
elif file.type == 'text/csv':
# file is .csv
doc_list.extend(get_csv_file(file))
# Step 2 : Break them into Chunks
text_chunks = get_text_chunks(doc_list)
# Step 3 : Create Embeddings and save them to Vector DB
vectorstore = get_vectorstore(text_chunks)
# Step 4 : Get our conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == '__main__':
command = 'CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir'
# Run the command using subprocess
try:
subprocess.run(command, shell=True, check=True)
print("Command executed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error: {e}")
main() |