Spaces:
Sleeping
Sleeping
File size: 8,923 Bytes
9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf 13bb955 cfb7816 9fc72bf cfb7816 13bb955 9fc72bf 13bb955 9fc72bf cfb7816 9fc72bf 13bb955 9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf cfb7816 9fc72bf 13bb955 9fc72bf 13bb955 9fc72bf cfb7816 9fc72bf 13bb955 9fc72bf 13bb955 9fc72bf 13bb955 9fc72bf 13bb955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import subprocess
import streamlit as st
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import FastEmbedEmbeddings # General embeddings from HuggingFace models.
from langchain.memory import ConversationBufferMemory
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from htmlTemplates import css, bot_template, user_template
from langchain.llms import LlamaCpp # For loading transformer models.
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
import tempfile
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain import hub
import os
import glob
# TEXT LOADERS
def get_pdf_text(pdf_docs):
"""
Purpose: A hypothetical loader for PDF files in Python.
Usage: Used to extract text or other information from PDF documents.
Load Function: A load_pdf function might be used to read and extract data from a PDF file.
input : pdf document path
returns : extracted text
"""
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name)
with open(temp_filepath, "wb") as f:
f.write(pdf_docs.getvalue())
pdf_loader = PyPDFLoader(temp_filepath)
pdf_doc = pdf_loader.load()
return pdf_doc
def get_text_file(text_docs):
"""
"""
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, text_docs.name)
with open(temp_filepath, "wb") as f:
f.write(text_docs.getvalue())
text_loader = TextLoader(temp_filepath)
text_doc = text_loader.load()
return text_doc
def get_csv_file(csv_docs):
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, csv_docs.name)
with open(temp_filepath, "wb") as f:
f.write(csv_docs.getvalue())
csv_loader = CSVLoader(temp_filepath)
csv_doc = csv_loader.load()
return csv_doc
def get_json_file(json_docs):
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, json_docs.name)
with open(temp_filepath, "wb") as f:
f.write(json_docs.getvalue())
json_loader = JSONLoader(
file_path=temp_filepath,
jq_schema='.messages[].content',
text_content=False
)
json_doc = json_loader.load()
return json_doc
def get_text_chunks(documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512,
chunk_overlap=50,
length_function=len
)
documents = text_splitter.split_documents(documents)
return documents
def get_vectorstore(text_chunks, embeddings):
vectorstore = Chroma.from_documents(documents= text_chunks,
embedding= st.session_state.embeddings,
persist_directory= "./vectordb/")
# Document stored
return vectorstore
def get_conversation_chain(vectorstore):
model_path = st.session_state.model
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = LlamaCpp(model_path= model_path,
n_ctx=4000,
max_tokens= 500,
fp = 50,
n_batch = 512,
callback_manager = callback_manager,
verbose=True)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
# prompt template π
template = """
You are a Experience human Resource Manager. When the employee asks you a question, you will have to refer the company policy and respond in a professional way. Make sure to sound Empethetic while being professional and sound like a Human!
Try to summarise the content and keep the answer to the point.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Context: {context}
Question: {question}
Answer:
"""
rag_prompt_custom = PromptTemplate.from_template(template)
# prompt = hub.pull("rlm/rag-prompt")
conversation_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),
chain_type_kwargs={"prompt": rag_prompt_custom},
)
conversation_chain.callback_manager = callback_manager
conversation_chain.memory = ConversationBufferMemory()
return conversation_chain
def handle_userinput():
clear = False
# Add clear chat button
if st.button("Clear Chat history"):
clear = True
st.session_state.messages = []
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "How can I help you?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
if clear:
st.session_state.conversation.clean()
msg = st.session_state.conversation.run(prompt)
print(msg)
st.session_state.messages.append({"role": "assistant", "content": msg})
st.chat_message("assistant").write(msg)
# Function to apply rounded edges using CSS
def add_rounded_edges(image_path="./randstad_featuredimage.png", radius=30):
st.markdown(
f'<style>.rounded-img{{border-radius: {radius}px; overflow: hidden;}}</style>',
unsafe_allow_html=True,)
st.image(image_path, use_column_width=True, output_format='auto')
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple Files",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.title("π¬ Randstad HR Chatbot")
st.subheader("π A HR powered by Generative AI")
# default model
st.session_state.model = "./models/mistral-7b-instruct-v0.2.Q5_K_M.gguf"
# user_question = st.text_input("Ask a question about your documents:")
st.session_state.embeddings = FastEmbedEmbeddings( model_name= "BAAI/bge-small-en-v1.5",
cache_dir="./embedding_model/")
if len(glob.glob("./vectordb/*.sqlite3")) > 0 :
vectorstore = Chroma(persist_directory="./vectordb/", embedding_function=st.session_state.embeddings)
st.session_state.conversation = get_conversation_chain(vectorstore)
handle_userinput()
with st.sidebar:
# calling a
add_rounded_edges()
st.subheader("Select Your Embedding Model Model")
st.session_state.model = st.selectbox( 'Models', tuple( glob.glob('./models/*.gguf') ) )
st.subheader("Your documents")
docs = st.file_uploader(
"Upload File (pdf,text,csv...) and click 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
doc_list = []
for file in docs:
print('file - type : ', file.type)
if file.type == 'text/plain':
# file is .txt
doc_list.extend(get_text_file(file))
elif file.type in ['application/octet-stream', 'application/pdf']:
# file is .pdf
doc_list.extend(get_pdf_text(file))
elif file.type == 'text/csv':
# file is .csv
doc_list.extend(get_csv_file(file))
elif file.type == 'application/json':
# file is .json
doc_list.extend(get_json_file(file))
# get the text chunks
text_chunks = get_text_chunks(doc_list)
# create vector store
vectorstore = get_vectorstore(text_chunks, st.session_state.embeddings)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == '__main__':
command = 'CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir'
# Run the command using subprocess
try:
subprocess.run(command, shell=True, check=True)
print("Command executed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error: {e}")
main() |