File size: 24,401 Bytes
cb2619e e3e8dae cb2619e e3e8dae cb2619e 82ea186 cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e 82ea186 cb2619e 82ea186 cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e e3e8dae cb2619e 82ea186 cb2619e 82ea186 cb2619e e3e8dae cb2619e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import html
from typing import Tuple
import gradio as gr
import numpy as np
import random
import pandas as pd
import matplotlib.pyplot as plt
from io import BytesIO, StringIO
import base64
import json
from gradio_client import Client
AA_str = 'ACDEFGHIKLMNPQRSTVWY*-'.lower()
AA_TO_CODONS = {"F": ["TTT","TTC"],
"L": ["TTA", "TTG", "CTT", "CTC", "CTA", "CTG"],
"I": ["ATT", "ATC", "ATA"],
"M": ["ATG"],
"V": ["GTT", "GTC", "GTA", "GTG"],
"S": ["TCT", "TCC", "TCA", "TCG", "AGT", "AGC"],
"P": ["CCT", "CCC", "CCA", "CCG"],
"T": ["ACT", "ACC", "ACA", "ACG"],
"A": ["GCT", "GCC", "GCA", "GCG"],
"Y": ["TAT", "TAC"],
"H": ["CAT", "CAC"],
"Q": ["CAA", "CAG"],
"N": ["AAT", "AAC"],
"K": ["AAA", "AAG"],
"D": ["GAT", "GAC"],
"E": ["GAA", "GAG"],
"C": ["TGT", "TGC"],
"W": ["TGG"],
"R": ["CGT", "CGC", "CGA", "CGG", "AGA", "AGG"],
"G": ["GGT", "GGC", "GGA", "GGG"],
"*": ["TAA", "TAG", "TGA"]}
def reverse_dictionary(dictionary):
"""Return dict of {value: key, ->}
Input:
dictionary: dict of {key: [value, ->], ->}
Output:
reverse_dictionary: dict of {value: key, ->}
"""
reverse_dictionary = {}
for key, values in dictionary.items():
for value in values:
reverse_dictionary[value] = key
return reverse_dictionary
CODON_TO_AA = reverse_dictionary(AA_TO_CODONS)
# 模拟数据 - 实际使用时需要替换为真实数据
species_data = {
"human": {"codon_table": {}, "trna": {}, "codon_usage": {}},
"mouse": {"codon_table": {}, "trna": {}, "codon_usage": {}},
"virus": {"codon_table": {}, "trna": {}, "codon_usage": {}},
"Escherichia coli": {"codon_table": {}, "trna": {}, "codon_usage": {}},
"saccharomyces cerevisiae": {"codon_table": {}, "trna": {}, "codon_usage": {}},
"Pichia": {"codon_table": {}, "trna": {}, "codon_usage": {}},
}
# 示例数据
EXAMPLE_PROTEIN = "MSFSRRPKITKSDIVDQISLNIRNNNLKLEKKYIRLVIDAFFEELKGNLCLNNVIEFRSFGTFEVRKRKGRLNARNPQTGEYVKVLDHHVAYFRPGKDLKERVWGIKG"
EXAMPLE_CDS = "atgagctttagccgccgcccgaaaattaccaaaagcgatattgtggatcagattagcctg\
aacattcgcaacaacaacctgaaactggaaaaaaaatatattcgcctggtgattgatgcg\
ttttttgaagaactgaaaggcaacctgtgcctgaacaacgtgattgaatttcgcagcttt\
ggcacctttgaagtgcgcaaacgcaaaggccgcctgaacgcgcgcaacccgcagaccggc\
gaatatgtgaaagtgctggatcatcatgtggcgtattttcgcccgggcaaagatctgaaa\
gaacgcgtgtggggcattaaaggc".upper().replace('T', 'U')
EXAMPLE_UTR5 = "GAAAAGAGCCCCGGAAAGGAUCUAUCCCUUCCUGUUCUGCUGCACGCAAAAGAACAGCCAAGGGGGAGGCCACC"
EXAMPLE_UTR3 = "GCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAA"
EXAMPLE_MRNA = EXAMPLE_UTR5 + EXAMPLE_CDS + EXAMPLE_UTR3
def find_longest_cds(seq: str) -> Tuple[int, int]:
"""
在mRNA序列中查找最长的CDS区域
参数:
seq: mRNA序列
返回:
(start, end): CDS区域的起始和结束索引
"""
seq = seq.upper().replace('U', 'T')
best_start = -1
best_end = -1
max_length = 0
# 尝试所有可能的阅读框
for frame in range(3):
in_orf = False
current_start = -1
for pos in range(frame, len(seq) - 2, 3):
codon = seq[pos:pos + 3]
# 如果是起始密码子
if codon == "ATG" and not in_orf:
in_orf = True
current_start = pos
# 如果是终止密码子
elif in_orf and codon in ["TAA", "TAG", "TGA"]:
orf_length = pos - current_start
if orf_length > max_length:
max_length = orf_length
best_start = current_start
best_end = pos + 3
in_orf = False
# 处理没有终止密码子的情况
if in_orf:
orf_length = len(seq) - current_start
if orf_length > max_length:
max_length = orf_length
best_start = current_start
best_end = len(seq)
return best_start, best_end
def calculate_cds_variants(protein_seq):
if not protein_seq:
return 0
aa_count = len(protein_seq)
return min(2 ** aa_count, 10**15) # 限制上限避免过大数字
def optimize_cds(protein_seq, species, method, status_update):
if not protein_seq:
status_update("❌ Error: Please enter a protein sequence")
return pd.DataFrame(), None
status_update("🔄 Optimizing CDS sequences...")
# 计算潜在变异数
variants = calculate_cds_variants(protein_seq)
# 生成20个优化序列示例
results = []
for i in range(20):
seq = ''.join(random.choices("ACGT", k=len(protein_seq)*3))
# 序列截断显示
seq_display = seq[:30] + "..." if len(seq) > 30 else seq
gc = random.uniform(0.3, 0.7)
trna = random.uniform(0.5, 1.0)
usage = random.uniform(0.6, 0.95)
mfe = random.uniform(-30, -10)
score = gc*0.25 + trna*0.25 + usage*0.25 + (-mfe/40)*0.25
results.append({
"Rank": i+1,
"Sequence": seq_display,
"Full_Sequence": seq, # 完整序列用于下载
"GC%": f"{gc*100:.1f}%",
"tRNA": f"{trna:.3f}",
"Usage": f"{usage:.3f}",
"MFE": f"{mfe:.1f}",
"Score": f"{score:.3f}"
})
df = pd.DataFrame(results)
display_df = df.drop(columns=['Full_Sequence']) # 显示时不包含完整序列
# 生成图表
fig, ax = plt.subplots(figsize=(10, 6))
scores = [float(x) for x in df["Score"]]
bars = ax.bar(range(1, len(scores)+1), scores, color='skyblue', alpha=0.7)
ax.set_xlabel("Sequence Rank")
ax.set_ylabel("Composite Score")
ax.set_title(f"CDS Optimization Results ({method})")
ax.grid(True, alpha=0.3)
# 高亮前5名
for i in range(min(5, len(bars))):
bars[i].set_color('orange')
status_update(f"✅ Successfully generated {len(results)} optimized sequences. Potential variants: {variants:,}")
return display_df, fig
def design_mrna(utr5_file, utr3_file, cds_seq, status_update):
if not cds_seq:
status_update("❌ Error: Please enter a CDS sequence")
return pd.DataFrame()
status_update("🔄 Designing mRNA sequences...")
# 默认UTR候选序列
default_utr5 = ["GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUGG",
"GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUGG"]
default_utr3 = ["AAUAAAGCUUUUGCUUUUGUGGUGAAAUUGUUAAUAAACUAUUUUUUUUUU",
"AAUAAAGCUUUUGCUUUUGUGGUGAAAUUGUUAAUAAACUAUUUUUUUUUU"]
# 生成20个设计结果示例
designs = []
for i in range(20):
utr5 = random.choice(default_utr5)
utr3 = random.choice(default_utr3)
full_seq = utr5 + cds_seq + utr3
# 序列截断显示
full_seq_display = full_seq[:40] + "..." if len(full_seq) > 40 else full_seq
mfe = random.uniform(-50, -20)
stability = random.uniform(0.6, 0.9)
designs.append({
"Rank": i+1,
"Design": f"Design_{i+1}",
"5'UTR": utr5[:15] + "..." if len(utr5) > 15 else utr5,
"3'UTR": utr3[:15] + "..." if len(utr3) > 15 else utr3,
"MFE": f"{mfe:.1f}",
"Stability": f"{stability:.3f}",
"Sequence": full_seq_display,
"Full_Sequence": full_seq # 完整序列用于下载
})
df = pd.DataFrame(designs)
display_df = df.drop(columns=['Full_Sequence']) # 显示时不包含完整序列
status_update(f"✅ Successfully designed {len(designs)} mRNA sequences")
return display_df
def download_cds_results(results_df):
if results_df is None or len(results_df) == 0:
return None
# 重新添加完整序列用于下载
download_data = []
for idx, row in results_df.iterrows():
download_data.append({
"Rank": row["Rank"],
"Full_Sequence": ''.join(random.choices("ACGT", k=150)), # 模拟完整序列
"GC%": row["GC%"],
"tRNA": row["tRNA"],
"Usage": row["Usage"],
"MFE": row["MFE"],
"Score": row["Score"]
})
download_df = pd.DataFrame(download_data)
# 保存为CSV
csv_buffer = StringIO()
download_df.to_csv(csv_buffer, index=False)
csv_content = csv_buffer.getvalue()
# 创建临时文件
filename = "cds_optimization_results.csv"
with open(filename, 'w') as f:
f.write(csv_content)
return filename
def download_mrna_results(results_df):
if results_df is None or len(results_df) == 0:
return None
# 重新添加完整序列用于下载
download_data = []
for idx, row in results_df.iterrows():
download_data.append({
"Rank": row["Rank"],
"Design": row["Design"],
"Full_Sequence": ''.join(random.choices("ACGT", k=300)), # 模拟完整序列
"5'UTR": row["5'UTR"],
"3'UTR": row["3'UTR"],
"MFE": row["MFE"],
"Stability": row["Stability"]
})
download_df = pd.DataFrame(download_data)
# 保存为CSV
csv_buffer = StringIO()
download_df.to_csv(csv_buffer, index=False)
csv_content = csv_buffer.getvalue()
# 创建临时文件
filename = "mrna_design_results.csv"
with open(filename, 'w') as f:
f.write(csv_content)
return filename
def validate_dna_sequence(seq):
if len(set(seq)-set('ACGTU'))>0:
return False, str(set(seq)-set('ACGTU'))
return True, ""
def translate_cds(cds_seq,repeat=1):
cds_seq = cds_seq.upper().replace('U', 'T')
amino_acid_list = []
for i in range(0, len(cds_seq), 3):
codon = cds_seq[i:i + 3]
amino_acid_list.append(CODON_TO_AA.get(codon, '-') * repeat)
amino_acid_seq = ''.join(amino_acid_list)
return amino_acid_seq
class MaoTaoWeb:
def __init__(self):
self.app = self.design_app()
def design_app(self):
# 创建Gradio界面
with gr.Blocks(title="Vaccine Designer", theme=gr.themes.Soft()) as app:
gr.Markdown("# 🧬 Vaccine Design Platform")
gr.Markdown("*Academic Collaboration Platform for mRNA Vaccine Design*")
# 全局状态显示
self.status_display = gr.Textbox(
label="Status",
value="Ready to start",
interactive=False,
container=True
)
# 创建各个标签页
self.mrna_annotation_tab()
self.cds_optimization_tab()
self.mrna_design_tab()
self.rpcontact_tab()
self.resources_tab()
return app
def mrna_annotation_tab(self):
with gr.Tab("🔬 mRNA Annotation"):
gr.Markdown("## mRNA Sequence Annotation")
with gr.Row():
with gr.Column(scale=3):
mrna_input = gr.Textbox(
label="mRNA Sequence",
placeholder="Enter mRNA sequence here...",
lines=5,
max_lines=10
)
with gr.Column(scale=1):
start_position = gr.Number(
label="CDS Start",
value=-1,
interactive=True,
precision=0,
)
stop_position = gr.Number(
label="CDS End",
value=-1,
interactive=True,
precision=0,
)
with gr.Row():
example_btn = gr.Button("Load Example", variant="secondary")
annotate_btn = gr.Button("Annotate Regions", variant="primary")
with gr.Row():
annotation_output = gr.HTML(
label="Sequence Regions",
value="<div style='font-family: monospace;'>Results will appear here</div>"
)
def annotate_sequence(seq,start=-1,end=-1):
if not seq:
return "<div style='color: red;'>Please enter a sequence</div>", "❌error"
if not validate_dna_sequence(seq):
return "<div style='color: red;'>Invalid sequence. Only A, C, G, T/U allowed.</div>", "❌error"
if start ==-1 and end ==-1:
start, end = find_longest_cds(seq)
status_msg = f"✅ Found CDS at position {start} to {end}"
else:
status_msg = f"✅ Using user-defined CDS at position {start} to {end}"
if start == -1:
return "<div style='color: red;'>No CDS found in sequence</div>", "❌error"
# 提取CDS序列
cds_seq = seq[start:end]
# 翻译CDS为氨基酸序列
aa_seq = translate_cds(cds_seq)
# 创建带颜色的HTML结果
html_result = "<div style='font-family: monospace; white-space: pre; margin-left: 15px;'>"
frame_lenth = 60
# CDS and proten
cds_formatted = '\n'.join([cds_seq[i:i + frame_lenth] for i in range(0, len(cds_seq), frame_lenth)])
aa_formatted = '\n'.join([aa_seq[i:i + frame_lenth] for i in range(0, len(aa_seq), frame_lenth)])
html_result += f"{frame_lenth} nt per line\n\n<span style='font-weight: bold;'>CDS ({len(cds_seq)} bp):\n{cds_formatted}\n\n</span>"
html_result += f"<span style=' font-weight: bold;'>Protein ({len(aa_seq)} bp):\n{aa_formatted}\n\n</span>"
# 5'UTR部分 - 蓝色
if start > 0:
utr5 = html.escape(seq[:start])
# 每50个字符一组显示
utr5_formatted = '\n'.join([utr5[i:i + frame_lenth] for i in range(0, len(utr5), frame_lenth)])
html_result += f"<span style='color: #006400; font-weight: bold;'>5'UTR ({len(utr5)} bp):\n{utr5_formatted}\n</span>\n"
else:
html_result += f"<span style='color: #006400; font-weight: bold;'>5'UTR:\nN/A\n</span>\n"
if end - start > 0:
# CDS部分 - 绿色
html_result += f"<span style='color: blue; font-weight: bold;'>CDS align ({len(cds_seq)} bp):\n"
# 格式化显示CDS序列和对应的氨基酸
for i in range(0, len(cds_seq), frame_lenth):
# 显示核苷酸序列
nt_chunk = cds_seq[i:i + frame_lenth]
nt_formatted = ' '.join([nt_chunk[j:j + 3] for j in range(0, len(nt_chunk), 3)])
html_result += f"{nt_formatted}\n"
# 显示对应的氨基酸序列
aa_start = i // 3
aa_end = min(aa_start + frame_lenth//3, len(aa_seq))
aa_chunk = aa_seq[aa_start:aa_end]
aa_formatted = ' '.join(aa_chunk) # 每个氨基酸之间加三个空格
# 添加空格对齐氨基酸和密码子
alignment = ' ' * (len(nt_formatted.split()[0]) // 2)
html_result += f"{alignment}{aa_formatted}\n"
html_result += "</span>\n"
# 3'UTR部分 - 紫色
if end !=-1 and end < len(seq):
utr3 = html.escape(seq[end:])
# 每50个字符一组显示
utr3_formatted = '\n'.join([utr3[i:i + frame_lenth] for i in range(0, len(utr3), frame_lenth)])
html_result += f"<span style='color: purple; font-weight: bold;'>3'UTR ({len(utr3)} bp):\n{utr3_formatted}\n</span>"
else:
html_result += "<span style='color: purple; font-weight: bold;'>3'UTR: </span>N/A"
return html_result,status_msg
annotate_btn.click(
annotate_sequence,
inputs=[mrna_input,start_position,stop_position],
outputs=[annotation_output,self.status_display]
)
example_btn.click(
lambda: [EXAMPLE_MRNA, -1, -1],
outputs=[mrna_input,start_position,stop_position]
)
def cds_optimization_tab(self):
with gr.Tab("🧬 CDS Optimization"):
gr.Markdown("## CDS Sequence Optimization")
with gr.Row():
with gr.Column(scale=2):
protein_seq = gr.Textbox(
label="Protein Sequence",
placeholder="Enter protein sequence here...",
lines=3
)
cds_example_btn = gr.Button("Load Example", variant="secondary")
with gr.Column(scale=1):
species = gr.Dropdown(
choices=list(species_data.keys()),
label="Target Species",
value="human"
)
method = gr.Radio(
choices=["Max GC Content", "tRNA Abundance", "Codon Usage", "MFE Optimization"],
label="Optimization Method",
value="Max GC Content"
)
with gr.Row():
optimize_btn = gr.Button("🚀 Optimize CDS", variant="primary", scale=2)
variants_display = gr.Number(
label="Potential Variants",
value=0,
interactive=False,
scale=1
)
with gr.Row():
results_table = gr.Dataframe(
label="Optimization Results",
headers=["Rank", "Sequence", "GC%", "tRNA", "Usage", "MFE", "Score"],
datatype=["number", "str", "str", "str", "str", "str", "str"],
col_count=(7, "fixed"),
wrap=True
)
optimization_plot = gr.Plot(label="Score Distribution")
with gr.Row():
download_cds_btn = gr.Button("📥 Download CDS Results", variant="secondary")
cds_download_file = gr.File(label="Download File", visible=False)
def optimize_and_update(protein_seq, species, method):
# 更新状态
status_msg = self.status_display.update("🔄 Optimizing CDS sequences...")
# 执行优化
df, plot = optimize_cds(protein_seq, species, method,status_msg)
# 计算变异数
variants = calculate_cds_variants(protein_seq) if protein_seq else 0
# 最终状态
final_status = f"✅ Optimization complete! Generated {len(df)} sequences with {variants:,} potential variants"
self.status_display.update(final_status)
return df, plot, variants
optimize_btn.click(
optimize_and_update,
inputs=[protein_seq, species, method],
outputs=[results_table, optimization_plot, variants_display]
)
cds_example_btn.click(lambda: EXAMPLE_PROTEIN, outputs=protein_seq)
download_cds_btn.click(
download_cds_results,
inputs=results_table,
outputs=cds_download_file
)
def mrna_design_tab(self):
with gr.Tab("🧪 mRNA Design"):
gr.Markdown("## Full mRNA Sequence Design")
with gr.Row():
with gr.Column():
utr5_upload = gr.File(
label="5'UTR Candidates (Optional)",
file_types=[".txt"]
)
utr3_upload = gr.File(
label="3'UTR Candidates (Optional)",
file_types=[".txt"]
)
with gr.Column():
cds_input = gr.Textbox(
label="CDS Sequence",
placeholder="Enter CDS sequence here...",
lines=4
)
mrna_example_btn = gr.Button("Load Example", variant="secondary")
design_btn = gr.Button("🎯 Design mRNA", variant="primary")
design_results = gr.Dataframe(
label="mRNA Design Results",
headers=["Rank", "Design", "5'UTR", "3'UTR", "MFE", "Stability", "Sequence"],
datatype=["number", "str", "str", "str", "str", "str", "str"],
col_count=(7, "fixed"),
wrap=True
)
with gr.Row():
download_mrna_btn = gr.Button("📥 Download mRNA Results", variant="secondary")
mrna_download_file = gr.File(label="Download File", visible=False)
def design_and_update(utr5_file, utr3_file, cds_seq):
# 更新状态
status_msg = self.status_display.update("🔄 Designing mRNA sequences...")
# 执行设计
df = design_mrna(utr5_file, utr3_file, cds_seq)
# 最终状态
final_status = f"✅ mRNA design complete! Generated {len(df)} design variants"
self.status_display.update(final_status)
return df
design_btn.click(
design_and_update,
inputs=[utr5_upload, utr3_upload, cds_input],
outputs=[design_results]
)
mrna_example_btn.click(lambda: EXAMPLE_CDS, outputs=cds_input)
download_mrna_btn.click(
download_mrna_results,
inputs=design_results,
outputs=mrna_download_file
)
def rpcontact_tab(self):
with gr.Tab("Interact"):
# https://julse-rpcontact.hf.space/
gr.Markdown("## RNA-protein Contact Map")
with gr.Row():
client = Client("julse/RPcontact")
result = client.predict(
method="Upload FASTA File",
api_name="/toggle_inputs"
)
print(result)
def resources_tab(self):
with gr.Tab("📚 Resources"):
gr.Markdown("## Bioinformatics Resources")
with gr.Row():
with gr.Column():
gr.Markdown("### Databases")
gr.Markdown("""
- [NCBI GenBank](https://www.ncbi.nlm.nih.gov/genbank/)
- [Nucleic Acid Database](https://ngdc.cncb.ac.cn/ncov/)
- [Codon Usage Database](https://www.kazusa.or.jp/codon/)
- [ViralZone](https://viralzone.expasy.org/)
- [bioinformatics tool](https://www.bioinformatics.org/sms2/rev_trans.html)
""")
with gr.Column():
gr.Markdown("### Tools")
gr.Markdown("""
- [mRNA Designer Platform](https://www.biosino.org/mRNAdesigner/main)
- [ViennaRNA Package](https://www.tbi.univie.ac.at/RNA/)
- [BLAST](https://blast.ncbi.nlm.nih.gov/Blast.cgi)
- [Primer3](https://primer3.org/)
""")
gr.Markdown("---")
gr.Markdown("### Contact Information")
gr.Markdown("Academic Collaboration Platform | Email: bioinfo@university.edu")
if __name__ == "__main__":
# 实例化并启动应用
mtao_web = MaoTaoWeb()
mtao_web.app.launch(server_name="0.0.0.0", server_port=7860, debug=True) |