File size: 5,976 Bytes
b1fe272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import torch
from IPython.display import Image
from torchvision.utils import save_image
import torchvision
from torchvision.transforms import ToTensor, Normalize, Compose
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import torch.nn as nn
import cv2
import os
from IPython.display import FileLink

mnist = MNIST(root='data', 
              train=True, 
              download=True,
              transform=Compose([ToTensor(), Normalize(mean=(0.5,), std=(0.5,))]))
img, label = mnist[0]
print('Label: ', label)
print(img[:,10:15,10:15])
torch.min(img), torch.max(img)
def denorm(x):
    out = (x + 1) / 2
    return out.clamp(0, 1)

img_norm = denorm(img)
plt.imshow(img_norm[0], cmap='gray')
print('Label:', label)

batch_size = 100
data_loader = DataLoader(mnist, batch_size, shuffle=True)

for img_batch, label_batch in data_loader:
    print('first batch')
    print(img_batch.shape)
    plt.imshow(img_batch[0][0], cmap='gray')
    print(label_batch)
    break

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

image_size = 784
hidden_size = 256

D = nn.Sequential(
    nn.Linear(image_size, hidden_size),
    nn.LeakyReLU(0.2),
    nn.Linear(hidden_size, hidden_size),
    nn.LeakyReLU(0.2),
    nn.Linear(hidden_size, 1),
    nn.Sigmoid())

D.to(device);

latent_size = 64

G = nn.Sequential(
    nn.Linear(latent_size, hidden_size),
    nn.ReLU(),
    nn.Linear(hidden_size, hidden_size),
    nn.ReLU(),
    nn.Linear(hidden_size, image_size),
    nn.Tanh())

y = G(torch.randn(2, latent_size))
gen_imgs = denorm(y.reshape((-1, 28,28)).detach())

plt.imshow(gen_imgs[0], cmap='gray');

plt.imshow(gen_imgs[1], cmap='gray');

G.to(device);

criterion = nn.BCELoss()
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.0002)

def reset_grad():
    d_optimizer.zero_grad()
    g_optimizer.zero_grad()

def train_discriminator(images):
    # Create the labels which are later used as input for the BCE loss
    real_labels = torch.ones(batch_size, 1).to(device)
    fake_labels = torch.zeros(batch_size, 1).to(device)
        
    # Loss for real images
    outputs = D(images)
    d_loss_real = criterion(outputs, real_labels)
    real_score = outputs

    # Loss for fake images
    z = torch.randn(batch_size, latent_size).to(device)
    fake_images = G(z)
    outputs = D(fake_images)
    d_loss_fake = criterion(outputs, fake_labels)
    fake_score = outputs

    # Combine losses
    d_loss = d_loss_real + d_loss_fake
    # Reset gradients
    reset_grad()
    # Compute gradients
    d_loss.backward()
    # Adjust the parameters using backprop
    d_optimizer.step()
    
    return d_loss, real_score, fake_score

g_optimizer = torch.optim.Adam(G.parameters(), lr=0.0002)

def train_generator():
    # Generate fake images and calculate loss
    z = torch.randn(batch_size, latent_size).to(device)
    fake_images = G(z)
    labels = torch.ones(batch_size, 1).to(device)
    g_loss = criterion(D(fake_images), labels)

    # Backprop and optimize
    reset_grad()
    g_loss.backward()
    g_optimizer.step()
    return g_loss, fake_images

sample_dir = 'samples'
if not os.path.exists(sample_dir):
    os.makedirs(sample_dir)

# Save some real images
for images, _ in data_loader:
    images = images.reshape(images.size(0), 1, 28, 28)
    save_image(denorm(images), os.path.join(sample_dir, 'real_images.png'), nrow=10)
    break
   
Image(os.path.join(sample_dir, 'real_images.png'))

sample_vectors = torch.randn(batch_size, latent_size).to(device)

def save_fake_images(index):
    fake_images = G(sample_vectors)
    fake_images = fake_images.reshape(fake_images.size(0), 1, 28, 28)
    fake_fname = 'fake_images-{0:0=4d}.png'.format(index)
    print('Saving', fake_fname)
    save_image(denorm(fake_images), os.path.join(sample_dir, fake_fname), nrow=10)
    
# Before training
save_fake_images(0)
Image(os.path.join(sample_dir, 'fake_images-0000.png'))

num_epochs = 300
total_step = len(data_loader)
d_losses, g_losses, real_scores, fake_scores = [], [], [], []

for epoch in range(num_epochs):
    for i, (images, _) in enumerate(data_loader):
        # Load a batch & transform to vectors
        images = images.reshape(batch_size, -1).to(device)
        
        # Train the discriminator and generator
        d_loss, real_score, fake_score = train_discriminator(images)
        g_loss, fake_images = train_generator()
        
        # Inspect the losses
        if (i+1) % 200 == 0:
            d_losses.append(d_loss.item())
            g_losses.append(g_loss.item())
            real_scores.append(real_score.mean().item())
            fake_scores.append(fake_score.mean().item())
            print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}, D(x): {:.2f}, D(G(z)): {:.2f}' 
                  .format(epoch, num_epochs, i+1, total_step, d_loss.item(), g_loss.item(), 
                          real_score.mean().item(), fake_score.mean().item()))
        
    # Sample and save images
    save_fake_images(epoch+1)

# Save the model checkpoints 
torch.save(G.state_dict(), 'G.ckpt')
torch.save(D.state_dict(), 'D.ckpt')

Image('./samples/fake_images-0010.png')

Image('./samples/fake_images-0050.png')

Image('./samples/fake_images-0100.png')

Image('./samples/fake_images-0300.png')

vid_fname = 'gans_training.avi'

files = [os.path.join(sample_dir, f) for f in os.listdir(sample_dir) if 'fake_images' in f]
files.sort()

out = cv2.VideoWriter(vid_fname,cv2.VideoWriter_fourcc(*'MP4V'), 8, (302,302))
[out.write(cv2.imread(fname)) for fname in files]
out.release()
FileLink('gans_training.avi')

plt.plot(d_losses, '-')
plt.plot(g_losses, '-')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend(['Discriminator', 'Generator'])
plt.title('Losses');

plt.plot(real_scores, '-')
plt.plot(fake_scores, '-')
plt.xlabel('epoch')
plt.ylabel('score')
plt.legend(['Real Score', 'Fake score'])
plt.title('Scores');