File size: 13,359 Bytes
dc017a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""Results stage for the Loci Similes GUI."""

from __future__ import annotations

import csv
import io
import re
from typing import TYPE_CHECKING

try:
    import gradio as gr
except ImportError as exc:
    missing = getattr(exc, "name", None)
    base_msg = (
        "Optional GUI dependencies are missing. Install them via "
        "'pip install locisimiles[gui]' (Python 3.13+ also requires the "
        "audioop-lts backport) to use the Gradio interface."
    )
    if missing and missing != "gradio":
        raise ImportError(f"{base_msg} (missing package: {missing})") from exc
    raise ImportError(base_msg) from exc

if TYPE_CHECKING:
    from locisimiles.document import Document, TextSegment

import tempfile
from typing import Any, Dict, List, Tuple

try:
    import gradio as gr
except ImportError as exc:
    raise ImportError("Gradio is required for results page") from exc

from locisimiles.document import Document, TextSegment

# Type aliases from pipeline
FullDict = Dict[str, List[Tuple[TextSegment, float, float]]]


def update_results_display(results: FullDict | None, query_doc: Document | None, threshold: float = 0.5) -> tuple[dict, dict, dict]:
    """Update the results display with new data.
    
    Args:
        results: Pipeline results
        query_doc: Query document
        threshold: Classification probability threshold for counting finds
    
    Returns:
        Tuple of (query_segments_update, query_segments_state, matches_dict_state)
    """
    query_segments, matches_dict = _convert_results_to_display(results, query_doc, threshold)
    
    return (
        gr.update(value=query_segments),  # Update query segments dataframe
        query_segments,                   # Update query segments state
        matches_dict,                     # Update matches dict state
    )


def _format_metric_with_bar(value: float, is_above_threshold: bool = False) -> str:
    """Format a metric value with a visual progress bar.
    
    Args:
        value: Metric value between 0 and 1
        is_above_threshold: Whether to highlight this value
    
    Returns:
        HTML string with progress bar
    """
    percentage = int(value * 100)
    
    # Choose color based on threshold
    if is_above_threshold:
        bar_color = "#6B9BD1"  # Blue accent for findings
        bg_color = "#E3F2FD"   # Light blue background
    else:
        bar_color = "#B0B0B0"  # Gray for below threshold
        bg_color = "#F5F5F5"   # Light gray background
    
    html = f'''
    <div style="display: flex; align-items: center; gap: 8px; width: 100%;">
        <div style="flex: 1; background-color: {bg_color}; border-radius: 4px; overflow: hidden; height: 20px; position: relative;">
            <div style="background-color: {bar_color}; width: {percentage}%; height: 100%; transition: width 0.3s;"></div>
        </div>
        <span style="min-width: 45px; text-align: right; font-weight: {'bold' if is_above_threshold else 'normal'};">{value:.3f}</span>
    </div>
    '''
    return html


def _convert_results_to_display(results: FullDict | None, query_doc: Document | None, threshold: float = 0.5) -> tuple[list[list], dict]:
    """Convert pipeline results to display format.
    
    Args:
        results: Pipeline results (FullDict format)
        query_doc: Query document
        threshold: Classification probability threshold for counting finds
    
    Returns:
        Tuple of (query_segments_list, matches_dict)
    """
    if results is None or query_doc is None:
        # Return empty data if no results
        return [], {}
    
    # First pass: Create raw matches dictionary and count finds
    raw_matches = {}
    find_counts = {}
    
    for query_id, match_list in results.items():
        # Sort by probability (descending) to show most likely matches first
        sorted_matches = sorted(match_list, key=lambda x: x[2], reverse=True)  # x[2] is probability
        
        # Store raw numeric values
        raw_matches[query_id] = sorted_matches
        
        # Count finds above threshold
        find_counts[query_id] = sum(1 for _, _, prob in sorted_matches if prob >= threshold)
    
    # Convert query document to list format with find counts
    # Document is iterable and returns TextSegments in order
    query_segments = []
    for segment in query_doc:
        find_count = find_counts.get(segment.id, 0)
        query_segments.append([segment.id, segment.text, find_count])
    
    # Second pass: Format matches with HTML progress bars
    matches_dict = {}
    for query_id, match_list in raw_matches.items():
        matches_dict[query_id] = [
            [
                source_seg.id,
                source_seg.text,
                _format_metric_with_bar(round(similarity, 3), probability >= threshold),
                _format_metric_with_bar(round(probability, 3), probability >= threshold)
            ]
            for source_seg, similarity, probability in match_list
        ]
    
    return query_segments, matches_dict


def _on_query_select(evt: gr.SelectData, query_segments: list, matches_dict: dict) -> tuple[dict, dict]:
    """Handle query segment selection and return matching source segments.
    
    Note: evt.index[0] gives the row number when clicking anywhere in that row.
    
    Args:
        evt: Selection event data
        query_segments: List of query segments
        matches_dict: Dictionary mapping query IDs to matches
    
    Returns:
        A tuple of (prompt_visibility_update, dataframe_update_with_data)
    """
    if evt.index is None or len(evt.index) < 1:
        return gr.update(visible=True), gr.update(visible=False)
    
    row_index = evt.index[0]
    if row_index >= len(query_segments):
        return gr.update(visible=True), gr.update(visible=False)
    
    segment_id = query_segments[row_index][0]
    matches = matches_dict.get(segment_id, [])
    
    # Hide prompt, show dataframe with results
    return gr.update(visible=False), gr.update(value=matches, visible=True)


def _extract_numeric_from_html(html_str: str) -> float:
    """Extract numeric value from HTML formatted metric string.
    
    Args:
        html_str: HTML string with embedded numeric value
    
    Returns:
        Extracted numeric value
    """
    import re
    # Extract the number from the span at the end: <span ...>0.XXX</span>
    match = re.search(r'<span[^>]*>([\d.]+)</span>', html_str)
    if match:
        return float(match.group(1))
    # Fallback: if it's already a number
    try:
        return float(html_str)
    except (ValueError, TypeError):
        return 0.0


def _export_results_to_csv(query_segments: list, matches_dict: dict, threshold: float) -> str:
    """Export results to a CSV file.
    
    Args:
        query_segments: List of query segments with find counts
        matches_dict: Dictionary mapping query IDs to matches
        threshold: Classification probability threshold
    
    Returns:
        Path to the temporary CSV file
    """
    # Create a temporary file
    temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv', newline='', encoding='utf-8')
    
    with temp_file as f:
        writer = csv.writer(f)
        
        # Write header
        writer.writerow([
            "Query_Segment_ID",
            "Query_Text",
            "Source_Segment_ID",
            "Source_Text",
            "Similarity",
            "Probability",
            "Above_Threshold"
        ])
        
        # Write data for each query segment
        for query_row in query_segments:
            query_id = query_row[0]
            query_text = query_row[1]
            
            # Get matches for this query segment
            matches = matches_dict.get(query_id, [])
            
            if matches:
                for match in matches:
                    source_id = match[0]
                    source_text = match[1]
                    # Extract numeric values from HTML formatted strings
                    similarity = _extract_numeric_from_html(match[2]) if isinstance(match[2], str) else match[2]
                    probability = _extract_numeric_from_html(match[3]) if isinstance(match[3], str) else match[3]
                    above_threshold = "Yes" if probability >= threshold else "No"
                    
                    writer.writerow([
                        query_id,
                        query_text,
                        source_id,
                        source_text,
                        similarity,
                        probability,
                        above_threshold
                    ])
            else:
                # Write row even if no matches
                writer.writerow([
                    query_id,
                    query_text,
                    "",
                    "",
                    "",
                    "",
                    ""
                ])
    
    return temp_file.name


def build_results_stage() -> tuple[gr.Step, dict[str, Any]]:
    """Build the results stage UI.
    
    Returns:
        A tuple of (Step component, components_dict) where components_dict contains
        references to all interactive components that need to be accessed later.
    """
    with gr.Step("Results", id=2) as step:
        # State to hold current query segments and matches
        query_segments_state = gr.State(value=[])
        matches_dict_state = gr.State(value={})
        gr.Markdown("### πŸ“Š Step 3: View Results")
        gr.Markdown(
            "Select a query segment on the left to view potential intertextual references from the source document. "
            "Similarity measures the cosine similarity between embeddings (0-1, higher = more similar). "
            "Probability is the classifier's confidence that the pair represents an intertextual reference (0-1, higher = more likely)."
        )
        
        # Download button
        with gr.Row():
            download_btn = gr.DownloadButton("Download Results as CSV", variant="primary")
        
        with gr.Row():
            # Left column: Query segments
            with gr.Column(scale=1):
                gr.Markdown("### Query Document Segments")
                query_segments = gr.Dataframe(
                    value=[],
                    headers=["Segment ID", "Text", "Finds"],
                    interactive=False,
                    show_label=False,
                    label="Query Document Segments",
                    wrap=True,
                    max_height=600,
                    col_count=(3, "fixed"),
                )
            
            # Right column: Matching source segments
            with gr.Column(scale=1):
                gr.Markdown("### Potential Intertextual References")
                
                # Prompt shown initially
                selection_prompt = gr.Markdown(
                    """
                    <div style="display: flex; align-items: center; justify-content: center; height: 400px; font-size: 18px; color: #666;">
                        <div style="text-align: center;">
                            <div style="font-size: 48px; margin-bottom: 20px;">←</div>
                            <div>Select a query segment to view</div>
                            <div>potential intertextual references</div>
                        </div>
                    </div>
                    """,
                    visible=True
                )
                
                # Dataframe hidden initially
                source_matches = gr.Dataframe(
                    headers=["Source ID", "Source Text", "Similarity", "Probability"],
                    interactive=False,
                    show_label=False,
                    label="Potential Intertextual References from Source Document",
                    wrap=True,
                    max_height=600,
                    visible=False,
                    datatype=["str", "str", "html", "html"],  # Enable HTML rendering for metric columns
                )
        
        with gr.Row():
            restart_btn = gr.Button("← Start Over", size="lg")

    # Return the step and all components that need to be accessed
    components = {
        "query_segments": query_segments,
        "query_segments_state": query_segments_state,
        "matches_dict_state": matches_dict_state,
        "source_matches": source_matches,
        "selection_prompt": selection_prompt,
        "download_btn": download_btn,
        "restart_btn": restart_btn,
    }
    
    return step, components


def setup_results_handlers(components: dict, walkthrough: gr.Walkthrough) -> None:
    """Set up event handlers for the results stage.
    
    Args:
        components: Dictionary of UI components from build_results_stage
        walkthrough: The Walkthrough component for navigation
    """
    # Selection handler for query segments
    components["query_segments"].select(
        fn=_on_query_select,
        inputs=[components["query_segments_state"], components["matches_dict_state"]],
        outputs=[components["selection_prompt"], components["source_matches"]],
    )
    
    # Restart button: Step 3 β†’ Step 1
    components["restart_btn"].click(
        fn=lambda: gr.Walkthrough(selected=0),
        outputs=walkthrough,
    )