Spaces:
Sleeping
Sleeping
File size: 1,791 Bytes
a6bc8ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from flask import Flask, request, jsonify
# Initialize the Flask app
app = Flask(__name__)
# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
# Load customer inquiries dataset
with open('my_text_file.txt', 'r') as f:
data = f.readlines()
# Preprocess data
def preprocess_text(text):
tokens = word_tokenize(text.lower())
stop_words = set(stopwords.words('english'))
filtered_tokens = [word for word in tokens if word not in stop_words]
stemmer = PorterStemmer()
stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens]
return stemmed_tokens
# Create TF-IDF vectorizer
vectorizer = TfidfVectorizer(analyzer=preprocess_text)
tfidf_matrix = vectorizer.fit_transform(data)
# Define chatbot logic
def chatbot_response(user_input):
preprocessed_input = preprocess_text(user_input)
input_vector = vectorizer.transform([user_input])
cosine_similarities = cosine_similarity(input_vector, tfidf_matrix)
most_similar_index = cosine_similarities.argmax()
return data[most_similar_index].strip()
# Define routes
@app.route('/')
def home():
return "Welcome to the Chatbot! Send a POST request to /chat with your message."
@app.route('/chat', methods=['POST'])
def chat():
user_input = request.json.get('message')
if user_input:
response = chatbot_response(user_input)
return jsonify({'response': response})
else:
return jsonify({'error': 'No message provided'}), 400
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8080)
|