File size: 14,808 Bytes
3861db2
 
 
 
 
 
 
 
 
 
bb08294
 
 
 
 
 
3861db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb08294
 
 
 
3861db2
 
bb08294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3861db2
bb08294
3861db2
 
 
 
 
 
 
 
 
 
bb08294
3861db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb08294
 
 
 
 
 
 
 
3861db2
bb08294
 
 
 
 
 
 
3861db2
 
 
bb08294
3861db2
 
bb08294
 
3861db2
 
bb08294
3861db2
 
 
 
 
bb08294
 
 
 
 
 
 
 
 
 
 
3861db2
 
 
 
 
 
bb08294
 
 
3861db2
 
 
bb08294
3861db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb08294
3861db2
 
 
 
bb08294
3861db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb08294
3861db2
 
 
 
bb08294
3861db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from collections import defaultdict
import streamlit as st
from utils import load_and_preprocess_data
import pandas as pd
import numpy as np
import altair as alt
from sklearn.mixture import GaussianMixture
import plotly.express as px
import itertools
from typing import Dict, List, Tuple
from sklearn.preprocessing import LabelEncoder

# Create an instance of LabelEncoder
label_encoder = LabelEncoder()




SIDEBAR_DESCRIPTION = """
# Client clustering

To cluster a client, we adopt the RFM metrics. They stand for:

- R = recency, that is the number of days since the last purchase
    in the store
- F = frequency, that is the number of times a customer has ordered something
- M = monetary value, that is how much a customer has spent buying
    from your business.

Given these 3 metrics, we can cluster the customers and find a suitable
"definition" based on the clusters they belong to. Since the dataset
we're using right now has about 5000 distinct customers, we identify
3 clusters for each metric.

## How we compute the clusters

We resort to a GaussianMixture algorithm. We can think of GaussianMixture
as generalized k-means clustering that incorporates information about
the covariance structure of the data as well as the centers of the clusters.
""".lstrip()

FREQUENCY_CLUSTERS_EXPLAIN = """
The **frequency** denotes how frequently a customer has ordered.

There 3 available clusters for this metric:

- cluster 1: denotes a customer that purchases one or few times (range [{}, {}])
- cluster 2: these customer have a discrete amount of orders (range [{}, {}])
- cluster 3: these customer purchases lots of times (range [{}, {}])

-------
""".lstrip()

RECENCY_CLUSTERS_EXPLAIN = """
The **recency** refers to how recently a customer has bought;

There 3 available clusters for this metric:

- cluster 1: the last order of these client is long time ago (range [{}, {}])
- cluster 2: these are clients that purchases something not very recently (range [{}, {}])
- cluster 3: the last order of these client is a few days/weeks ago (range [{}, {}])

-------
""".lstrip()

MONETARY_CLUSTERS_EXPLAIN = """
The **revenue** refers to how much a customer has spent buying
from your business.

There 3 available clusters for this metric:

- cluster 1: these clients spent little money (range [{}, {}])
- cluster 2: these clients spent a considerable amount of money (range [{}, {}])
- cluster 3: these clients spent lots of money (range [{}, {}])

-------
""".lstrip()

EXPLANATION_DICT = {
    "Frequency_cluster": FREQUENCY_CLUSTERS_EXPLAIN,
    "Recency_cluster": RECENCY_CLUSTERS_EXPLAIN,
    "Revenue_cluster": MONETARY_CLUSTERS_EXPLAIN,
}

# Fit and transform the 'Location' column
merged_df['Location_Encoded'] = label_encoder.fit_transform(merged_df['Location'])
# Assuming 'Age' contains categorical values (e.g., 'young', 'middle-aged', 'old')
merged_df['Age_Encoded'] = label_encoder.fit_transform(merged_df['Age'])

def create_features(df: pd.DataFrame):
    """Creates a new dataframe with the RFM features for each client based on Location and Age."""
    # Compute frequency, the number of distinct books a user has read.
    client_features = df.groupby("User-ID")["ISBN"].nunique().reset_index()
    client_features.columns = ["User-ID", "Frequency"]

    # For this example, let's assume the 'Price' column represents monetary value.
    # Add monetary value, the total revenue for each single user (total books read by the user).
    client_takings = df.groupby("User-ID").size()
    client_features["Total_Books_Read"] = client_takings.values

    # Add recency, let's use the count of unique 'ISBN' as a proxy for recency.
    # You can adjust this based on your specific context.
    client_recency = df.groupby("User-ID")["ISBN"].nunique().reset_index()
    client_recency.columns = ["User-ID", "Recency"]
    client_features["Recency"] = client_recency["Recency"]

    # Incorporating location and age for clustering purposes
    # You might consider encoding location or age if they're categorical
    # For simplicity, assuming both 'Location' and 'Age' are categorical here
    client_location_age = df.drop_duplicates(subset=["User-ID", "Location_Encoded", "Age_Encoded"])
    client_features = client_features.merge(
        client_location_age[["User-ID", "Location", "Age"]],
        on="User-ID",
        how="left",
    )

    return client_features[["User-ID", "Frequency", "Total_Books_Read", "Recency", "Location", "Age"]]



@st.cache
def cluster_clients(df: pd.DataFrame):
    """Computes the RFM features and clusters for each user based on the RFM metrics."""

    df_rfm = create_features(df)

    for to_cluster, order in zip(
        ["Total_Books_Read", "Frequency", "Recency"], ["ascending", "ascending", "descending"]
    ):
        kmeans = GaussianMixture(n_components=3, random_state=42)
        labels = kmeans.fit_predict(df_rfm[[to_cluster]])
        df_rfm[f"{to_cluster}_cluster"] = _order_cluster(kmeans, labels, order)

    return df_rfm


def _order_cluster(cluster_model: GaussianMixture, clusters, order="ascending"):
    """Orders the cluster by `order`."""
    centroids = cluster_model.means_.sum(axis=1)

    if order.lower() == "descending":
        centroids *= -1

    ascending_order = np.argsort(centroids)
    lookup_table = np.zeros_like(ascending_order)
    # Cluster will start from 1
    lookup_table[ascending_order] = np.arange(cluster_model.n_components) + 1
    return lookup_table[clusters]


def show_rating_history(user: int, df: pd.DataFrame):
    user_ratings = df.loc[df["User-ID"] == user, ["Book-Title", "Book-Rating"]]
    
    # Count of books rated by the user
    rated_books_count = user_ratings.shape[0]
    
    st.write(
        f"The user {user} has rated {rated_books_count} books. Here is the rating history:"
    )
    
    st.dataframe(user_ratings)
    
    # Total number of books read by the user
    total_books_read = rated_books_count
    
    st.write(f"Total number of books read by user {user}: {total_books_read}")



def show_user_info(user: int, df_rfm: pd.DataFrame, df_books_read: pd.DataFrame):
    """Prints some information about the user.

    The main information includes age, location,
    total_books_read, and the clusters they belong to.
    """

    user_row = df_rfm[df_rfm["User-ID"] == user]
    if len(user_row) == 0:
        st.write(f"No user with id {user}")

    output = []

    # Fetch user's information from df_rfm
    user_info = user_row.iloc[0]
    output.append(f"Age: {user_info['Age']}")
    output.append(f"Location: {user_info['Location']}")

    # Calculate total_books_read from df_books_read
    total_books_read = df_books_read[df_books_read["User-ID"] == user].shape[0]
    output.append(f"Total books read: {total_books_read}")

    # Display cluster memberships
    output.append("Cluster memberships:")
    for cluster in [column for column in user_row.columns if "_cluster" in column]:
        output.append(f"- {cluster} = {user_row[cluster].squeeze()}")

    st.write("\n".join(output))

    return (
        user_info["Recency_cluster"],
        user_info["Frequency_cluster"],
        user_info["Revenue_cluster"],
    )



def explain_cluster(cluster_info):
    """Displays a popup menu explinging the meanining of the clusters."""

    with st.expander("Show information about the clusters"):
        st.write(
            "**Note**: these values are valid for these dataset."
            "Different dataset will have different number of clusters"
            " and values"
        )
        for cluster, info in cluster_info.items():
            # Transform the (mins, maxs) tuple into
            # [min_1, max_1, min_2, max_2, ...] list.
            min_max_interleaved = list(itertools.chain(*zip(info[0], info[1])))
            st.write(EXPLANATION_DICT[cluster].format(*min_max_interleaved))


def categorize_user(recency_cluster, frequency_cluster, monetary_cluster):
    """Describe the user with few words based on the cluster he belongs to."""

    score = f"{recency_cluster}{frequency_cluster}{monetary_cluster}"

    # @fixme: find a better approeach. These elif chains don't scale at all.

    description = ""

    if score == "111":
        description = "Tourist"
    elif score.startswith("2"):
        description = "Losing interest"
    elif score == "133":
        description = "Former lover"
    elif score == "123":
        description = "Former passionate client"
    elif score == "113":
        description = "Spent a lot, but never come back"
    elif score.startswith("1"):
        description = "About to dump"
    elif score == "313":
        description = "Potential lover"
    elif score == "312":
        description = "Interesting new client"
    elif score == "311":
        description = "New customer"
    elif score == "333":
        description = "Gold client"
    elif score == "322":
        description = "Lovers"
    else:
        description = "Average client"

    st.write(f"The customer can be described as: **{description}**")


def plot_rfm_distribution(
    df_rfm: pd.DataFrame, cluster_info: Dict[str, Tuple[List[int], List[int]]]
):
    """Plots 3 histograms for the RFM metrics."""

    for x, to_reverse in zip(("Revenue", "Frequency", "Recency"), (False, False, True)):
        fig = px.histogram(
            df_rfm,
            x=x,
            log_y=True,
            title=f"{x} metric",
        )
        # Get the max value in the cluster info. The cluster_info_dict is a
        # tuple with first element the min values of the cluster, and second
        # element the max values of the cluster.
        values = cluster_info[f"{x}_cluster"][1]  # get max values
        print(values)
        # Add vertical bar on each cluster end. But skip the last cluster.
        loop_range = range(len(values) - 1)
        if to_reverse:
            # Skip the last element
            loop_range = range(len(values) - 1, 0, -1)
        for n_cluster in loop_range:
            print(x)
            print(values[n_cluster])
            fig.add_vline(
                x=values[n_cluster],
                annotation_text=f"End of cluster {n_cluster+1}",
                line_dash="dot",
                annotation=dict(textangle=90, font_color="red"),
            )

        fig.update_layout(
            yaxis_title="Count (log scale)",
        )

        st.plotly_chart(fig)


def display_dataframe_heatmap(df_rfm: pd.DataFrame, cluster_info_dict):
    """Displays an heatmap of how many clients lay in the clusters.

    This method uses some black magic coming from the dataframe
    styling guide.
    """

    def style_with_limits(x, column, cluster_limit_dict):
        """Simple function to transform the cluster number into
        a cluster + range string."""
        min_v = cluster_limit_dict[column][0][x - 1]
        max_v = cluster_limit_dict[column][1][x - 1]
        return f"{x}: [{int(min_v)}, {int(max_v)}]"

    # Create a dataframe with the count of clients for each group
    # of cluster.

    count = (
        df_rfm.groupby(["Recency_cluster", "Frequency_cluster", "Revenue_cluster"])[
            "User-ID"
        ]
        .count()
        .reset_index()
    )
    count = count.rename(columns={"User-ID": "Count"})

    # Remove duplicates
    count = count.drop_duplicates(
        ["Revenue_cluster", "Frequency_cluster", "Recency_cluster"]
    )

    # Add limits to the cells. In this way, we can better display
    # the heatmap.
    for cluster in ["Revenue_cluster", "Frequency_cluster", "Recency_cluster"]:
        count[cluster] = count[cluster].apply(
            lambda x: style_with_limits(x, cluster, cluster_info_dict)
        )

    # Use the count column as values, then index with the clusters.
    count = count.pivot(
        index=["Revenue_cluster", "Frequency_cluster"],
        columns="Recency_cluster",
        values="Count",
    )

    # Style manipulation
    cell_hover = {
        "selector": "td",
        "props": "font-size:1.2em",
    }
    index_names = {
        "selector": ".index_name",
        "props": "font-style: italic; color: Black; font-weight:normal;font-size:1.2em;",
    }
    headers = {
        "selector": "th:not(.index_name)",
        "props": "background-color: White; color: black; font-size:1.2em",
    }

    # Finally, display
    # We cannot directly print the dataframe since the streamlit
    # functin remove the multiindex. Thus, we extract the html representation
    # and then display it.
    st.markdown("## Heatmap: how the client are distributed between clusters")
    st.write(
        count.style.format(thousands=" ", precision=0, na_rep="0")
        .set_table_styles([cell_hover, index_names, headers])
        .background_gradient(cmap="coolwarm")
        .to_html(),
        unsafe_allow_html=True,
    )


def main():
    st.sidebar.markdown(SIDEBAR_DESCRIPTION)

    df, _, _ = load_and_preprocess_data()
    df_rfm = cluster_clients(df)

    st.markdown(
        "# Dataset "
        "\nThis is the processed dataset with information about the clients, such as"
        " the RFM values and the clusters they belong to."
    )
    st.dataframe(df_rfm.style.format(formatter={"Revenue": "{:.2f}"}))

    cluster_info_dict = defaultdict(list)

    with st.expander("Show more details about the clusters"):
        for cluster in [column for column in df_rfm.columns if "_cluster" in column]:
            st.write(cluster)
            cluster_info = (
                df_rfm.groupby(cluster)[cluster.split("_")[0]]
                .describe()
                .reset_index(names="Cluster")
            )
            min_cluster = cluster_info["min"].astype(int)
            max_cluster = cluster_info["max"].astype(int)
            cluster_info_dict[cluster] = (min_cluster, max_cluster)
            st.dataframe(cluster_info)

    st.markdown("## RFM metric distribution")

    plot_rfm_distribution(df_rfm, cluster_info_dict)

    display_dataframe_heatmap(df_rfm, cluster_info_dict)

    st.markdown("## Interactive exploration")

    filter_by_cluster = st.checkbox(
        "Filter client: only one client per cluster type",
        value=True,
    )

    client_to_select = (
        df_rfm.groupby(["Recency_cluster", "Frequency_cluster", "Revenue_cluster"])[
            "User-ID"
        ]
        .first()
        .values
        if filter_by_cluster
        else df["User-ID"].unique()
    )

    # Let the user select the user to investigate
    user = st.selectbox(
        "Select a customer to show more information about him.",
        client_to_select,
    )

    show_purhcase_history(user, df)

    recency, frequency, revenue = show_user_info(user, df_rfm)

    categorize_user(recency, frequency, revenue)

    explain_cluster(cluster_info_dict)


main()