File size: 9,640 Bytes
462dacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio
import torch
from transformers import LogitsProcessor
import numpy as np

from modules import shared

params = {
    'color_by_perplexity': False,
    'color_by_probability': False,
    'ppl_scale': 15.0, # No slider for this right now, because I don't think it really needs to be changed. Very large perplexity scores don't show up often.
    #'probability_dropdown': False
}

class PerplexityLogits(LogitsProcessor):
    def __init__(self, verbose=False):
        self.generated_token_ids = []
        self.selected_probs = []
        self.top_token_ids_list = []
        self.top_probs_list = []
        self.perplexities_list = []
        self.last_probs = None
        self.verbose = verbose

    def __call__(self, input_ids, scores):
        probs = torch.softmax(scores, dim=-1, dtype=torch.float)
        log_probs = torch.nan_to_num(torch.log(probs))
        entropy = -torch.sum(probs*log_probs)
        entropy = entropy.cpu().numpy()
        perplexity = round(float(np.exp(entropy)), 4)
        self.perplexities_list.append(perplexity)
        last_token_id = int(input_ids[0][-1].cpu().numpy().item())
        # Store the generated tokens (not sure why this isn't accessible in the output endpoint!)
        self.generated_token_ids.append(last_token_id)
        # Get last probability, and add to the list if it wasn't there
        if len(self.selected_probs) > 0:
            # Is the selected token in the top tokens?
            if self.verbose:
                print(shared.tokenizer.decode(last_token_id))
                print([shared.tokenizer.decode(token_id) for token_id in self.top_token_ids_list[-1]])
                print(self.top_probs_list[-1])
            if last_token_id in self.top_token_ids_list[-1]:
                idx = self.top_token_ids_list[-1].index(last_token_id)
                self.selected_probs.append(self.top_probs_list[-1][idx])
            else:
                self.top_token_ids_list[-1].append(last_token_id)
                last_prob = round(float(self.last_probs[last_token_id]), 4)
                self.top_probs_list[-1].append(last_prob)
                self.selected_probs.append(last_prob)
        else:
            self.selected_probs.append(1.0) # Placeholder for the last token of the prompt

        if self.verbose:
            pplbar = "-"
            if not np.isnan(perplexity):
                pplbar = "*"*round(perplexity)
            print(f"{last_token}\t{perplexity:.2f}\t{pplbar}")

        # Get top 5 probabilities
        top_tokens_and_probs = torch.topk(probs, 5)
        top_probs = top_tokens_and_probs.values.cpu().numpy().astype(float).tolist()
        top_token_ids = top_tokens_and_probs.indices.cpu().numpy().astype(int).tolist()

        self.top_token_ids_list.append(top_token_ids)
        self.top_probs_list.append(top_probs)
        
        probs = probs.cpu().numpy().flatten()
        self.last_probs = probs # Need to keep this as a reference for top probs

        # Doesn't actually modify the logits!
        return scores

# Stores the perplexity and top probabilities
ppl_logits_processor = None

def logits_processor_modifier(logits_processor_list, input_ids):
    global ppl_logits_processor
    ppl_logits_processor = PerplexityLogits()
    logits_processor_list.append(ppl_logits_processor)

def output_modifier(text):
    global ppl_logits_processor

    # TODO: It's probably more efficient to do this above rather than modifying all these lists
    # Remove last element of perplexities_list, top_token_ids_list, top_tokens_list, top_probs_list since everything is off by one because this extension runs before generation
    perplexities = ppl_logits_processor.perplexities_list[:-1]
    top_token_ids_list = ppl_logits_processor.top_token_ids_list[:-1]
    top_tokens_list = [[shared.tokenizer.decode(token_id) for token_id in top_token_ids] for top_token_ids in top_token_ids_list]
    top_probs_list = ppl_logits_processor.top_probs_list[:-1]
    # Remove first element of generated_token_ids, generated_tokens, selected_probs because they are for the last token of the prompt
    gen_token_ids = ppl_logits_processor.generated_token_ids[1:]
    gen_tokens = [shared.tokenizer.decode(token_id) for token_id in gen_token_ids]
    sel_probs = ppl_logits_processor.selected_probs[1:]

    end_part = '</span>' # Helps with finding the index after replacing part of the text.
    in_code = False # Since the <span> tags mess up code blocks, avoid coloring while inside a code block, based on finding tokens with '`' in them

    if params['color_by_probability'] and params['color_by_perplexity']:
        i = 0
        for token, prob, ppl, top_tokens, top_probs in zip(gen_tokens, sel_probs, perplexities, top_tokens_list, top_probs_list):
            if '`' in token:
                in_code = not in_code
                continue
            if in_code:
                continue
            color = probability_perplexity_color_scale(prob, ppl)
            if token in text[i:]:
                text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
                i += text[i:].find(end_part) + len(end_part)
    elif params['color_by_perplexity']:
        i = 0
        for token, ppl, top_tokens, top_probs in zip(gen_tokens, perplexities, top_tokens_list, top_probs_list):
            if '`' in token:
                in_code = not in_code
                continue
            if in_code:
                continue
            color = perplexity_color_scale(ppl)
            if token in text[i:]:
                text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
                i += text[i:].find(end_part) + len(end_part)
    elif params['color_by_probability']:
        i = 0
        for token, prob, top_tokens, top_probs in zip(gen_tokens, sel_probs, top_tokens_list, top_probs_list):
            if '`' in token:
                in_code = not in_code
                continue
            if in_code:
                continue
            color = probability_color_scale(prob)
            if token in text[i:]:
                text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
                i += text[i:].find(end_part) + len(end_part)

    print('Average perplexity:', round(np.mean(perplexities), 4))
    return text

# Green-yellow-red color scale
def probability_color_scale(prob):
    rv = 0
    gv = 0
    if prob <= 0.5:
        rv = 'ff'
        gv = hex(int(255*prob*2))[2:]
        if len(gv) < 2:
            gv = '0'*(2 - len(gv)) + gv
    else:
        rv = hex(int(255 - 255*(prob - 0.5)*2))[2:]
        gv = 'ff'
        if len(rv) < 2:
            rv = '0'*(2 - len(rv)) + rv
    return rv + gv + '00'

# Red component only, white for 0 perplexity (sorry if you're not in dark mode)
def perplexity_color_scale(ppl):
    value = hex(max(int(255.0 - params['ppl_scale']*(float(ppl)-1.0)), 0))[2:]
    if len(value) < 2:
        value = '0'*(2 - len(value)) + value
    return 'ff' + value + value

# Green-yellow-red for probability and blue component for perplexity
def probability_perplexity_color_scale(prob, ppl):
    rv = 0
    gv = 0
    bv = hex(min(max(int(params['ppl_scale']*(float(ppl)-1.0)), 0), 255))[2:]
    if len(bv) < 2:
            bv = '0'*(2 - len(bv)) + bv
    if prob <= 0.5:
        rv = 'ff'
        gv = hex(int(255*prob*2))[2:]
        if len(gv) < 2:
            gv = '0'*(2 - len(gv)) + gv
    else:
        rv = hex(int(255 - 255*(prob - 0.5)*2))[2:]
        gv = 'ff'
        if len(rv) < 2:
            rv = '0'*(2 - len(rv)) + rv
    return rv + gv + bv

def add_color_html(token, color):
    return f'<span style="color: #{color}">{token}</span>'

"""
# This is still very broken at the moment, needs CSS too but I'm not very good at CSS (and neither is GPT-4 apparently) so I still need to figure that out.
def add_dropdown_html(token, color, top_tokens, top_probs):
    html = f'<span class="hoverable" style="color: #{color}">{token}<div class="dropdown"><table class="dropdown-content">'
    for token, prob in zip(top_tokens, top_probs):
        # TODO: Background color? Bold for selected token?
        # Bigger issue: Why is there a newline after the first token, and the dropdown fails there?
        # The HTML ends up like <p><span>word</span></p><div>...</div>,
        # even though for all other tokens it shows up correctly.
        row_color = probability_color_scale(prob)
        html += f'<tr><td style="color: #{row_color}">{token}</td><td style="color: #{row_color}">{prob}</td></tr>'
    html += '</table></div></span>'
    return html
"""

def ui():
    color_by_ppl_check = gradio.Checkbox(value=False, label="Color by perplexity", info="Higher perplexity is more red. If also showing probability, higher perplexity has more blue component.")
    def update_color_by_ppl_check(x):
        params.update({'color_by_perplexity': x})
    color_by_ppl_check.change(update_color_by_ppl_check, color_by_ppl_check, None)

    color_by_prob_check = gradio.Checkbox(value=False, label="Color by probability", info="Green-yellow-red linear scale, with 100% green, 50% yellow, 0% red.")
    def update_color_by_prob_check(x):
        params.update({'color_by_probability': x})
    color_by_prob_check.change(update_color_by_prob_check, color_by_prob_check, None)

    # Doesn't work yet...
    """
    prob_dropdown_check = gradio.Checkbox(value=False, label="Probability dropdown")
    def update_prob_dropdown_check(x):
        params.update({'probability_dropdown': x})
    prob_dropdown_check.change(update_prob_dropdown_check, prob_dropdown_check, None)
    """