File size: 8,968 Bytes
b100e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Minimal decoder-only Transformer model."""

from typing import Any, Optional, Sequence

from flax import linen as nn
from flax import struct
import jax.numpy as jnp
from t5x.examples.decoder_only import layers


@struct.dataclass
class TransformerConfig:
  """Global hyperparameters used to minimize obnoxious kwarg plumbing."""
  vocab_size: int
  # Activation dtypes.
  dtype: Any = jnp.float32
  emb_dim: int = 512
  num_heads: int = 8
  num_layers: int = 6
  head_dim: int = 64
  mlp_dim: int = 2048
  # Activation functions are retrieved from Flax.
  mlp_activations: Sequence[str] = ('relu',)
  dropout_rate: float = 0.1
  # If `True`, the embedding weights are used in the decoder output layer.
  logits_via_embedding: bool = False


class DecoderLayer(nn.Module):
  """Transformer decoder layer."""
  config: TransformerConfig

  @nn.compact
  def __call__(self,
               inputs: jnp.ndarray,
               decoder_mask: Optional[jnp.ndarray] = None,
               deterministic: bool = False,
               decode: bool = False,
               max_decode_length: Optional[int] = None,
               prefill: bool = False,
               prefill_lengths: Optional[jnp.ndarray] = None):
    """Applies decoder block module."""
    cfg = self.config

    # Relative position embedding as attention biases.
    l = max_decode_length if decode and max_decode_length else inputs.shape[-2]

    # During decoding, this module will be called with `decode=True` first to
    # initialize the decoder cache, including a cached relpos bias. The prefill
    # codepath will call this once again with `decode=False`, which is slightly
    # wasteful but generally harmless. During subsequent decode steps, this will
    # be called with `decode=True` and will reuse the cached bias. This
    # significantly improves performance during decoding with many decode steps.
    decoder_bias = layers.RelativePositionBiases(
        num_buckets=32,
        max_distance=128,
        num_heads=cfg.num_heads,
        dtype=cfg.dtype,
        embedding_init=nn.initializers.variance_scaling(1.0, 'fan_avg',
                                                        'uniform'),
        name='relpos_bias')(
            l, l, False, decode=decode)

    # `inputs` is layer input with a shape [batch, length, emb_dim].
    x = layers.LayerNorm(
        dtype=cfg.dtype, name='pre_self_attention_layer_norm')(
            inputs)

    # Self-attention block
    x = layers.MultiHeadDotProductAttention(
        num_heads=cfg.num_heads,
        dtype=cfg.dtype,
        head_dim=cfg.head_dim,
        dropout_rate=cfg.dropout_rate,
        name='self_attention')(
            x,
            x,
            decoder_mask,
            decoder_bias,
            deterministic=deterministic,
            decode=decode,
            prefill=prefill,
            prefill_lengths=prefill_lengths)
    x = nn.Dropout(
        rate=cfg.dropout_rate,
        broadcast_dims=(-2,),
        name='post_self_attention_dropout')(
            x, deterministic=deterministic)
    x = x + inputs

    # MLP block.
    y = layers.LayerNorm(dtype=cfg.dtype, name='pre_mlp_layer_norm')(x)
    y = layers.MlpBlock(
        intermediate_dim=cfg.mlp_dim,
        activations=cfg.mlp_activations,
        intermediate_dropout_rate=cfg.dropout_rate,
        dtype=cfg.dtype,
        name='mlp',
    )(y, deterministic=deterministic)
    y = nn.Dropout(
        rate=cfg.dropout_rate, broadcast_dims=(-2,), name='post_mlp_dropout')(
            y, deterministic=deterministic)
    y = y + x

    return y


class Decoder(nn.Module):
  """A stack of decoder layers."""
  config: TransformerConfig

  @nn.compact
  def __call__(self,
               decoder_input_tokens: jnp.ndarray,
               decoder_target_tokens: jnp.ndarray,
               decoder_segment_ids: Optional[jnp.ndarray] = None,
               decoder_positions: Optional[jnp.ndarray] = None,
               decoder_causal_attention: Optional[jnp.ndarray] = None,
               *,
               enable_dropout: bool = True,
               decode: bool = False,
               max_decode_length: Optional[int] = None,
               prefill: Optional[bool] = None,
               prefill_lengths: Optional[jnp.ndarray] = None):
    """Applies LanguageModel on the inputs.

    For a decoder-only architecture with the notion of "prefix", e.g., a prefix
    LM where the prefix corresponds to the "inputs" of a supervised dataset, we
    perform the "prefill" operation to fill the autoregressive cache
    corresponding to the prefix region in one go. Then the autoregressive
    decoding starts after the prefix. This makes the decoding process more
    efficient. In addition, it gives an option to use bidirectional attention in
    the prefix region because the cache is filled simultaneously.

    Args:
      decoder_input_tokens: input token to the decoder.
      decoder_target_tokens: target token to the decoder.
      decoder_segment_ids: decoder segmentation info for packed examples.
      decoder_positions: decoder subsequence positions for packed examples.
      decoder_causal_attention: a binary mask indicating the portion of the
        sequence to apply bidirectional attention to instead of causal. As an
        example, useful to specify the "inputs" portion of a concatenated
        sequence for a prefix LM.
      enable_dropout: enables dropout if set to True.
      decode: whether to prepare and use an autoregressive cache as opposed to
        using teacher-forcing.
      max_decode_length: maximum sequence length to be decoded.
      prefill: whether to run a partial sequence to prefill the cache.
      prefill_lengths: an array of shape [batch] denoting the length of each
        partial sequence we are filling in the cache.

    Returns:
      logits array.
    """
    cfg = self.config
    deterministic = not enable_dropout
    assert decoder_input_tokens.ndim == 2  # [batch, len]

    if decode:
      decoder_mask = None
    else:
      decoder_mask = layers.make_decoder_mask(
          decoder_target_tokens=decoder_target_tokens,
          dtype=cfg.dtype,
          decoder_causal_attention=decoder_causal_attention,
          decoder_segment_ids=decoder_segment_ids)

    embedding = layers.Embed(
        num_embeddings=cfg.vocab_size,
        features=cfg.emb_dim,
        dtype=cfg.dtype,
        attend_dtype=jnp.float32,  # for logit training stability
        embedding_init=nn.initializers.normal(stddev=1.0),
        one_hot=True,
        name='token_embedder')
    y = embedding(decoder_input_tokens.astype('int32'))

    y = nn.Dropout(
        rate=cfg.dropout_rate, broadcast_dims=(-2,), name='input_dropout')(
            y, deterministic=deterministic)
    y = y.astype(cfg.dtype)

    for lyr in range(cfg.num_layers):
      # [batch, length, emb_dim] -> [batch, length, emb_dim]
      y = DecoderLayer(
          config=cfg, name=f'layers_{lyr}')(
              y,
              decoder_mask=decoder_mask,
              deterministic=deterministic,
              decode=decode,
              max_decode_length=max_decode_length,
              prefill=prefill,
              prefill_lengths=prefill_lengths)

    y = layers.LayerNorm(dtype=cfg.dtype, name='decoder_norm')(y)
    y = nn.Dropout(
        rate=cfg.dropout_rate, broadcast_dims=(-2,), name='output_dropout')(
            y, deterministic=deterministic)

    # [batch, length, emb_dim] -> [batch, length, vocab_size]
    if cfg.logits_via_embedding:
      # Use the transpose of embedding matrix for the logit transform.
      logits = embedding.attend(y)
      # Correctly normalize pre-softmax logits for this shared case.
      logits = logits / jnp.sqrt(y.shape[-1])
    else:
      # Use a separate dense layer for the logit transform.
      logits = layers.DenseGeneral(
          cfg.vocab_size,
          dtype=jnp.float32,  # Use float32 for stabiliity.
          kernel_axes=('embed', 'vocab'),
          name='logits_dense')(
              y)
    return logits


# TODO(hwchung): remove this after figuring out the name scope issue.
class DecoderWrapper(nn.Module):
  """Thin wrapper for the outer "decoder/" name scope."""

  config: TransformerConfig

  def setup(self):
    self.decoder = Decoder(self.config, name='decoder')

  def __call__(self, *args, **kwargs):
    return self.decoder(*args, **kwargs)