File size: 54,299 Bytes
b100e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""General utility functions for t5x."""
import collections.abc
from concurrent.futures import thread
import contextlib
import dataclasses
import functools
import importlib
import inspect
import os
import re
import time
import typing
from typing import Any, Callable, Iterable, Mapping, Optional, Sequence, Tuple, Type, Union
import warnings

from absl import logging
import clu.data
from flax import traverse_util
import flax.core
from flax.core import scope as flax_scope
from flax.linen import partitioning as flax_partitioning
import jax
from jax import prng
from jax import pxla
from jax.experimental import multihost_utils
from jax.experimental.global_device_array import GlobalDeviceArray
import jax.numpy as jnp
import numpy as np
import orbax.checkpoint
import seqio
from t5x import checkpoints
from t5x import optimizers
from t5x import partitioning
from t5x import state_utils
from t5x import train_state as train_state_lib
import tensorflow as tf
from tensorflow.io import gfile
import typing_extensions


Array = Union[np.ndarray, jnp.ndarray, jax.pxla.ShardedDeviceArray, tf.Tensor]
PyTreeDef = type(jax.tree_structure(None))
PartitionSpec = partitioning.PartitionSpec
DType = Union[np.dtype, type(jnp.bfloat16)]
Shape = Tuple[int, ...]


# TODO(adarob): Remove namespace mapping after client gin files are updated.
TensorBoardLogger = seqio.TensorBoardLogger

# -----------------------------------------------------------------------------
# Configurations
# -----------------------------------------------------------------------------


@dataclasses.dataclass
class SaveCheckpointConfig:
  """Configuration for saving model checkpoints."""
  # The dtype to save ('float32' or 'bfloat16').
  dtype: str = 'float32'
  # Number of steps between writing checkpoints.
  period: Optional[int] = None
  # Number of most recent checkpoints to keep, or None to keep them all.
  keep: Optional[int] = None
  # Number of dataset checkpoints to keep, or None to keep them all.
  # Note: Dataset checkpoints are also affected by `keep`.
  keep_dataset_checkpoints: Optional[int] = None
  # Whether to save dataset checkpoints.
  save_dataset: bool = False
  # The checkpointer class to use.
  checkpointer_cls: checkpoints.CheckpointerConstructor = checkpoints.Checkpointer
  # Transformations to apply, in order, to the state before writing.
  state_transformation_fns: Sequence[checkpoints.SaveStateTransformationFn] = (
      dataclasses.field(default_factory=list))

  def __post_init__(self):
    if self.dtype not in ('float32', 'bfloat16'):
      raise ValueError(
          "`SaveCheckpointConfig.dtype` must be one of 'float32' or "
          f"'bfloat16'. Got {self.dtype}.")


@dataclasses.dataclass
class RestoreCheckpointConfig:
  """Configuration for restoring model from checkpoint."""
  # Path(s) to checkpoint to restore from or directory (depending on `mode`).
  path: Union[str, Sequence[str]]
  # One of 'specific', 'latest', or 'all'.
  #   specific: load the checkpoint specified by `path`.
  #   latest: load most recent checkpoint in the directory specified by `path`.
  #   all: sequentially load all of checkpoints in the directory `path`.
  mode: str = 'latest'
  # An optional sequence of (pattern, replacement) regex pairs. The pattern
  # matches parameters in the model and the replacement matches the checkpoint
  # (after substitutions). The replacement may be None, in which case the
  # parameter can be dropped. Use `fallback_to_scratch` to fill them in with
  # newly initialized values.
  assignment_map: Optional[Sequence[Tuple[str, Optional[str]]]] = None
  # Whether to restore all optimizer parameters from the checkpoint.
  strict: bool = True
  # Whether to initialize parameters that are in the model being restored but
  # are missing from the checkpoint (after `assignment_map` is applied).
  fallback_to_scratch: bool = False
  # The dtype to restore ('float32' or 'bfloat16'), or None to load as saved.
  dtype: Optional[str] = None
  # Whether to restore the dataset checkpoint. Fails if checkpoint not present.
  restore_dataset: bool = False
  # The checkpointer class to use.
  checkpointer_cls: checkpoints.CheckpointerConstructor = checkpoints.Checkpointer
  # Transformations to apply, in order, to the state after reading. These will
  # be applied after the `assignment_map` transformations.
  state_transformation_fns: Sequence[
      checkpoints.RestoreStateTransformationFn] = ()

  def __post_init__(self):
    if self.mode not in ('specific', 'latest', 'all'):
      raise ValueError(
          "`RestoreCheckpointConfig.mode` must be one of 'specific', 'latest', "
          f"or 'all'. Got {self.mode}.")
    if self.dtype not in (None, 'float32', 'bfloat16'):
      raise ValueError(
          "`RestoreCheckpointConfig.dtype` must be one of `None`, 'float32', "
          f"or 'bfloat16'. Got {self.dtype}.")
    if self.assignment_map is not None:
      # Turns `assignment_map` into a transformation function.
      assignment_map_fn = functools.partial(
          state_utils.apply_assignment_map, assignment_map=self.assignment_map)
      # Prepends the `assignment_map` transformation to the front of the list.
      self.state_transformation_fns = (assignment_map_fn,
                                       *self.state_transformation_fns)


@dataclasses.dataclass
class CheckpointConfig:
  """Configuration for checkpointing of model and dataset."""
  save: Optional[SaveCheckpointConfig] = None
  restore: Optional[RestoreCheckpointConfig] = None


class LegacyCheckpointer(orbax.checkpoint.Checkpointer):
  """Implementation of Checkpointer interface for T5X.

  Relies on underlying save_checkpointer and restore_checkpointer, which are
  t5x.checkpoints.Checkpointer objects.
  """

  def __init__(self,
               save_checkpointer: checkpoints.Checkpointer,
               restore_checkpointer: checkpoints.Checkpointer,
               *,
               strict: Optional[bool] = False):
    self._save_checkpointer = save_checkpointer
    self._restore_checkpointer = restore_checkpointer
    self._strict = strict

  async def async_save(self, path: str, item: Any):
    raise NotImplementedError

  async def async_restore(self, path: str, item: Optional[Any] = None) -> Any:
    raise NotImplementedError

  def save(self,
           path: str,
           item: train_state_lib.TrainState,
           state_transformation_fns: Sequence[
               checkpoints.SaveStateTransformationFn] = (),
           *,
           concurrent_gb: int = 128):
    """Performs save operation using save_checkpointer.

    Args:
      path: path to save item to.
      item: a TrainState PyTree to save.
      state_transformation_fns: Transformations to apply, in order, to the state
        before writing.
      concurrent_gb: the approximate number of gigabytes of partitionable
        parameters to process in parallel. Useful to preserve RAM.
    """
    train_state = item
    del path  # stored in save_checkpointer
    # dataset_iterator is also saved, but is provided in checkpointer init
    self._save_checkpointer.save(
        train_state, state_transformation_fns, concurrent_gb=concurrent_gb)

  def restore(self,
              path: str,
              item: Optional[train_state_lib.TrainState],
              state_transformation_fns: Sequence[
                  checkpoints.RestoreStateTransformationFn] = (),
              fallback_state: Optional[Mapping[str, Any]] = None,
              lazy_parameters: bool = False) -> train_state_lib.TrainState:
    """Performs restore operation using restore_checkpointer.

    Determines whether the indicated path is a Tensorflow checkpoint.

    Args:
      path: the string path to restore from.
      item: a TrainState PyTree to restore. Unused.
      state_transformation_fns: Transformations to apply, in order, to the state
        before writing.
      fallback_state: a state dict of an optimizer to fall back to for loading
        params that do not exist in the checkpoint (after applying all
        `state_transformation_fns`), but do exist in `Checkpointer.optimizer`.
        The union of `fallback_state` and state loaded from the checkpoint must
        match `Checkpointer.optimizer`.
      lazy_parameters: whether to load the parameters as LazyArrays to preserve
        memory.

    Returns:
      The restored train state.
    """
    del item  # not needed for restore in T5X
    from_tensorflow = gfile.exists(path + '.index')
    if from_tensorflow and state_transformation_fns:
      raise ValueError('Cannot initialize from a TensorFlow checkpoint using '
                       '`state_transformation_fns`.')
    if from_tensorflow:
      logging.info('Initializing parameters from TensorFlow checkpoint %s',
                   path)
      return self._restore_checkpointer.restore_from_tf_checkpoint(
          path, strict=self._strict)
    return self._restore_checkpointer.restore(
        path=path,
        state_transformation_fns=state_transformation_fns,
        fallback_state=fallback_state,
        lazy_parameters=lazy_parameters)


class LegacyCheckpointManager(orbax.checkpoint.CheckpointManager):
  """Implementation of CheckpointManager interface for T5X.

  Uses underlying LegacyCheckpointer to handle save/restore for Dataset and
  TrainState.
  """

  def __init__(self,
               save_cfg: SaveCheckpointConfig,
               restore_cfg: RestoreCheckpointConfig,
               train_state_shape: train_state_lib.TrainState,
               partitioner: partitioning.BasePartitioner,
               ds_iter: Optional[tf.data.Iterator] = None,
               model_dir: Optional[str] = None,
               use_gda: Optional[bool] = False):
    if save_cfg.save_dataset:
      assert ds_iter is not None
    save_checkpointer = save_cfg.checkpointer_cls(
        train_state=train_state_shape,
        partitioner=partitioner,
        checkpoints_dir=model_dir,
        dataset_iterator=ds_iter if save_cfg.save_dataset else None,
        save_dtype=save_cfg.dtype,
        keep=save_cfg.keep,
        use_gda=use_gda,
        keep_dataset_checkpoints=save_cfg.keep_dataset_checkpoints)

    if restore_cfg:
      restore_checkpointer = restore_cfg.checkpointer_cls(
          train_state=train_state_shape,
          partitioner=partitioner,
          checkpoints_dir='',  # unused for restore
          dataset_iterator=ds_iter if restore_cfg.restore_dataset else None,
          restore_dtype=jnp.dtype(restore_cfg.dtype)
          if restore_cfg.dtype else None)
      strict = restore_cfg.strict
    else:
      restore_checkpointer = None
      strict = False

    self._checkpointer = LegacyCheckpointer(
        save_checkpointer, restore_checkpointer, strict=strict)

  def save(self,
           train_state: train_state_lib.TrainState,
           state_transformation_fns: Sequence[
               checkpoints.SaveStateTransformationFn] = ()):
    """Performs save operation.

    Args:
      train_state: a TrainState PyTree to save.
      state_transformation_fns: Transformations to apply, in order, to the state
        before writing.
    """
    self._checkpointer.save(
        path='',  # not used
        item=train_state,
        state_transformation_fns=state_transformation_fns)

  def restore(
      self,
      paths: Sequence[str],
      restore_cfg: RestoreCheckpointConfig,
      fallback_state: Optional[Mapping[str, Any]] = None
  ) -> Union[train_state_lib.TrainState, Sequence[train_state_lib.TrainState]]:
    """Performs restore operation using restore_checkpointer.

    Determines whether the indicated path is a Tensorflow checkpoint.

    Args:
      paths: A sequence of paths to restore from.
      restore_cfg: RestoreCheckpointConfig specifying restoration information.
      fallback_state: a state dict of an optimizer to fall back to for loading
        params that do not exist in the checkpoint (after applying all
        `state_transformation_fns`), but do exist in `Checkpointer.optimizer`.
        The union of `fallback_state` and state loaded from the checkpoint must
        match `Checkpointer.optimizer`.

    Returns:
      The restored TrainState if only one TrainState can be restored from the
      given paths, otherwise a sequence of TrainStates.
    """
    if restore_cfg is None or paths is None:
      return None

    restored = []
    for path in paths:
      logging.info('Initializing parameters from specific T5X checkpoint %s',
                   path)
      restored.append(
          self._checkpointer.restore(
              path=path,
              item=None,  # not used
              state_transformation_fns=restore_cfg.state_transformation_fns,
              fallback_state=fallback_state))

    if len(restored) == 1:
      restored = restored[0]
    return restored


@dataclasses.dataclass
class DatasetConfig:
  """Configuration for loading a dataset from a SeqIO Task or Mixture."""
  mixture_or_task_name: str
  task_feature_lengths: Mapping[str, int]
  split: str
  batch_size: int
  shuffle: bool
  seed: Optional[int]
  # Whether to use a precomputed version of the dataset from a cache dir.
  use_cached: bool = False
  pack: bool = False
  # Whether to use tensor2tensor custom ops for more efficient packing.
  use_custom_packing_ops: bool = False
  # An optional module to import for registering the referenced Mixture or Task.
  # DEPRECATED.
  module: Optional[str] = None
  # Whether to cache the dataset in memory (only applies to evaluation data).
  use_memory_cache: bool = True


#------------------------------------------------------------------------------
# Fast *nondeterministic* hardware RNG for faster Dropout
#------------------------------------------------------------------------------
def _hardware_uniform(
    rng_key: Array,
    shape: Shape,
    dtype: jnp.dtype = np.float32,
    minval: Array = np.float32(0),
    maxval: Array = np.float32(1)
) -> Array:
  """Random uniform method that uses non-deterministic accelerator hardware."""
  del rng_key  # non-deterministic prng.
  minval = jax.lax.convert_element_type(minval, dtype)
  maxval = jax.lax.convert_element_type(maxval, dtype)
  return jax.lax.rng_uniform(minval, maxval, shape)


# For dropout-only hardware rng.
def _hardware_bernoulli(
    rng_key: Array, p: np.ndarray = np.float32(0.5),
    shape: Shape = ()) -> Array:
  del rng_key  # non-deterministic prng.
  return jax.lax.rng_uniform(0.0, 1.0, shape) < p


def set_hardware_rng_ops():
  """Enable JAX Custom PRNG extension."""
  jax.config.update('jax_enable_custom_prng', True)
  # Use only fast TPU hardware PRNG with iterated-hash "split" substitute.
  # Expected to be deterministic for a fixed partitioning.
  # Monkey-patch JAX PRNGKey to use unsafe_rbg_prng_impl
  # TODO(levskaya): replace with jax global config option once we debug it.
  rbg_prng_key = functools.partial(prng.seed_with_impl,
                                   prng.unsafe_rbg_prng_impl)
  jax.random.PRNGKey = rbg_prng_key
  jax._src.random.PRNGKey = rbg_prng_key  # pylint: disable=protected-access


# -----------------------------------------------------------------------------
# Training utility functions.
# -----------------------------------------------------------------------------


def get_zeros_batch_like_spec(
    batch_spec: Mapping[str,
                        jax.ShapeDtypeStruct]) -> Mapping[str, jnp.ndarray]:
  return {k: jnp.zeros(t.shape, t.dtype) for k, t in batch_spec.items()}


def get_zeros_batch_like_dataset(dataset: tf.data.Dataset,
                                 batch_size=None) -> Mapping[str, jnp.ndarray]:
  reshape = lambda s: (batch_size,) + s[1:] if batch_size else tuple(s)
  batch_spec = {
      k: jax.ShapeDtypeStruct(reshape(t.shape), t.dtype.as_numpy_dtype)
      for k, t in dataset.element_spec.items()
  }
  return get_zeros_batch_like_spec(batch_spec)


class InitFnCallable(typing_extensions.Protocol):
  """A callable that initializes model variables."""

  def __call__(
      self, rng: Array, input_shapes: Mapping[str, Array],
      input_types: Optional[Mapping[str,
                                    DType]]) -> flax_scope.FrozenVariableDict:
    ...


class LearningRateCallable(typing_extensions.Protocol):

  def __call__(self, step: jnp.ndarray) -> jnp.ndarray:
    ...


def create_learning_rate_scheduler(
    factors: str = 'constant * linear_warmup * rsqrt_decay',
    base_learning_rate: float = 0.5,
    warmup_steps: int = 1000,
    decay_factor: float = 0.5,
    steps_per_decay: int = 20000,
    steps_per_cycle: int = 100000,
    step_offset: int = 0,
    min_learning_rate: float = 1e-8) -> LearningRateCallable:
  """Creates learning rate schedule.

  Interprets factors in the factors string which can consist of:
  * constant: interpreted as the constant value,
  * linear_warmup: interpreted as linear warmup until warmup_steps,
  * linear_decay: linear decay from warmup_steps with decay_factor slope. Note
      this option implies 'constant * linear_warmup', and should not be used in
      in conjunction with `constant` or `linear_warmup` factors.
  * rsqrt_decay: divide by square root of max(step, warmup_steps)
  * rsqrt_normalized_decay: divide by square root of max(step/warmup_steps, 1)
  * decay_every: Every k steps decay the learning rate by decay_factor.
  * cosine_decay: Cyclic cosine decay, uses steps_per_cycle parameter.

  Args:
    factors: string, factors separated by '*' that defines the schedule.
    base_learning_rate: float, the starting constant for the lr schedule.
    warmup_steps: int, how many steps to warm up for in the warmup schedule.
    decay_factor: float, the amount to decay the learning rate by.
    steps_per_decay: int, how often to decay the learning rate.
    steps_per_cycle: int, steps per cycle when using cosine decay.
    step_offset: int, an offset that the step parameters to this function are
      relative to.
    min_learning_rate: float, minimum learning rate to output. Useful for cases
      when a decay function is (mis)configured to decay to non-positive values.

  Returns:
    a function learning_rate(step): float -> {'learning_rate': float}, the
    step-dependent lr.
  """
  factors = [n.strip() for n in factors.split('*')]

  def step_fn(step: jnp.ndarray) -> jnp.ndarray:
    """Step to learning rate function."""
    step = jnp.maximum(0, step - step_offset)
    ret = 1.0
    for name in factors:
      if name == 'constant':
        ret *= base_learning_rate
      elif name == 'linear_warmup':
        ret *= jnp.minimum(1.0, step / warmup_steps)
      elif name == 'linear_decay':
        ret *= base_learning_rate * jnp.minimum(
            step / warmup_steps, 1.0 + decay_factor * (warmup_steps - step))
      elif name == 'rsqrt_decay':
        ret /= jnp.sqrt(jnp.maximum(step, warmup_steps))
      elif name == 'rsqrt_normalized_decay':
        ret *= jnp.sqrt(warmup_steps)
        ret /= jnp.sqrt(jnp.maximum(step, warmup_steps))
      elif name == 'decay_every':
        ret *= (decay_factor**(step // steps_per_decay))
      elif name == 'cosine_decay':
        progress = jnp.maximum(0.0,
                               (step - warmup_steps) / float(steps_per_cycle))
        ret *= jnp.maximum(0.0,
                           0.5 * (1.0 + jnp.cos(jnp.pi * (progress % 1.0))))
      else:
        raise ValueError('Unknown factor %s.' % name)
    ret = jnp.maximum(ret, min_learning_rate)
    return jnp.asarray(ret, dtype=jnp.float32)

  return step_fn


def get_first_valid_restore_config_and_paths(
    restore_cfgs: Sequence[RestoreCheckpointConfig]
) -> Tuple[Optional[RestoreCheckpointConfig], Sequence[str]]:
  """Returns first valid restore_cfg and the paths to restore.

  Args:
    restore_cfgs: a sequence of RestoreCheckpointConfig objects, which should be
      filtered to determine the first valid object.

  Returns:
    Tuple of valid RestoreCheckpointConfig and a sequence of paths.
    If the first config encountered has mode 'specfic', it is immediately
    returned, along with its specified paths.
    If the mode is 'all' or 'latest', checks to ensure that there are valid
    checkpoints at each of the provided paths and filters the returned paths
    accordingly.
  """
  for restore_cfg in restore_cfgs:
    paths = ([restore_cfg.path]
             if isinstance(restore_cfg.path, str) else restore_cfg.path)
    if restore_cfg.mode == 'specific':
      return restore_cfg, paths
    elif restore_cfg.mode in ('all', 'latest'):
      for ckpt_dir in paths:
        if not gfile.isdir(ckpt_dir):
          raise ValueError(
              'Checkpoint path(s) must be valid directories when using '
              "restore mode 'all' or 'latest'.")
        # Check if this is a TensorFlow checkpoint dir.
        tf_ckpt_state = tf.train.get_checkpoint_state(ckpt_dir)

        if tf_ckpt_state:
          ckpt_paths = tf_ckpt_state.all_model_checkpoint_paths
        else:
          ckpt_paths = [
              os.path.join(ckpt_dir, f'checkpoint_{step}')
              for step in checkpoints.all_steps(ckpt_dir)
          ]
        if not ckpt_paths:
          logging.info('No checkpoints found in specified directory: %s',
                       ckpt_dir)
          continue
        if restore_cfg.mode == 'latest':
          logging.info('Using latest T5X checkpoint.')
          ckpt_paths = ckpt_paths[-1:]
        return restore_cfg, ckpt_paths
    else:
      logging.error('Unsupported checkpoint restore mode: %s', restore_cfg.mode)
  return None, []


def get_fallback_state(restore_cfg: RestoreCheckpointConfig,
                       init_fn: Callable[[jnp.ndarray], Mapping[str, Any]],
                       init_rng: jnp.ndarray) -> Optional[Mapping[str, Any]]:
  """Returns the fallback_state that can be used in restore()."""
  if restore_cfg is None:
    return
  if restore_cfg.fallback_to_scratch:
    if not restore_cfg.state_transformation_fns:
      raise ValueError('`state_transformation_fns` must be provided with '
                       '`fallback_to_scratch`')
    if init_rng is None:
      raise ValueError('An `init_rng` must be provided with '
                       '`fallback_to_scratch`')
    fallback_state = init_fn(init_rng)
  else:
    fallback_state = None
  return fallback_state


class TrainStateInitializer:
  """Helper for initializing partitioned TrainState from checkpoints or scratch.

  Common use cases:

  * To restore from a single checkpoint, use `from_checkpoint`.
  * To iterate over multiple checkpoints without recompiling the model,
    use `from_checkpoints`.
  * To initialize from scratch, use `from_scratch`.
  * To restore from a checkpoint with a fallback to initializing from scratch,
    use `from_checkpoint_or_scratch`.

  Attributes:
    global_train_state_shape: a TrainState containing the global (unpartitioned)
      shape  (in `jax.ShapeDtypeStruct`) of each parameter instead of its value.
    train_state_axes: a TrainState object containing a PartitionSpec (or None)
      for each parameter, in place of the parameter itself.
  """

  # TODO(adarob): Replace input_shapes and input_types with sample batch.
  def __init__(self,
               optimizer_def: Optional[optimizers.OptimizerDefType],
               init_fn: InitFnCallable,
               input_shapes: Mapping[str, Array],
               partitioner: partitioning.BasePartitioner,
               input_types: Optional[Mapping[str, DType]] = None):
    """TrainStateInitializer constructor.

    Args:
      optimizer_def: Optimizer def to be initialized, or None to create a
        `InferenceState` without an optimizer.
      init_fn: callable that initializes model variables from a PRNGKey and the
        input shapes.
      input_shapes: a mapping from key to array shape for each feature in the
        global (unsharded) input batch.
      partitioner: the partitioner to use.
      input_types: a mapping from key to array type for each feature in the
        global (unshared) input batch. If not provided, the type is assumed to
        be `jnp.float32`.
    """

    def initialize_train_state(rng: Array):
      initial_variables = init_fn(
          rng=rng, input_shapes=input_shapes, input_types=input_types)
      if optimizer_def:
        return train_state_lib.FlaxOptimTrainState.create(
            optimizer_def, initial_variables)
      return train_state_lib.InferenceState.create(initial_variables)

    self._partitioner = partitioner
    self.global_train_state_shape = jax.eval_shape(
        initialize_train_state, rng=jax.random.PRNGKey(0))
    self.train_state_axes = partitioner.get_mesh_axes(
        self.global_train_state_shape)
    self._initialize_train_state = initialize_train_state

    # Currently scanned layers require passing annotations through to the
    # point of the scan transformation to resolve an XLA SPMD issue.

    # init_fn is always(?) equal to model.get_initial_variables, fetch the model
    # instance from the bound method.
    model = init_fn.__self__  # pytype: disable=attribute-error
    if (hasattr(model, 'module') and hasattr(model.module, 'scan_layers') and
        model.module.scan_layers):
      if hasattr(model.module, 'spmd_annotations'):
        # update top-level module with spmd annotations.
        model.module = model.module.clone(
            parent=None, spmd_annotations=self.train_state_axes.params)

  def from_scratch(self, init_rng: Array) -> train_state_lib.TrainState:
    """Initializes the partitioned Optimizer from scratch."""
    logging.info('Initializing parameters from scratch.')

    # If pretraining and no checkpoint imported, we jit the (sharded-) init
    # function to minimize fragmentation. We use the same partition
    # setup as the training step/loop to initialize everything "in-place" and
    # avoid communication or OOM.
    p_initialize_train_state_fn = self._partitioner.partition(
        self._initialize_train_state,
        in_axis_resources=None,
        out_axis_resources=self.train_state_axes)
    return p_initialize_train_state_fn(init_rng)

  # TODO(b/216650048) deprecate this function and use orbax.
  def from_checkpoints(
      self,
      restore_cfgs: Sequence[RestoreCheckpointConfig],
      ds_iter: Optional[tf.data.Iterator] = None,
      init_rng: Optional[jnp.ndarray] = None,
  ) -> Iterable[train_state_lib.TrainState]:
    """Yields 0 or more restored partitioned Optimizers, and maybe datasets.

    The manner in which parameters are initialized depends on `restore_cfgs` and
    `restore_cfgs` is iterated over and the first config that matches one or
    more existing checkpoints is used to generate restored optimizers from the
    checkpoint(s). Any remaining configs are ignored.

    Args:
      restore_cfgs: ordered sequence of configurations specifying checkpoint(s)
        to restore from. The first config to match a checkpoint will be used.
      ds_iter: a tf.data.Iterator for the input data, or None. If provided, the
        referenced iterator's state may be silently restored (depending on the
        config's `restore_dataset` value) along with the optimizer.
      init_rng: for initializing parameters from scratch when they are not
        available in the checkpoint and `fallback_to_scratch` is True

    Yields:
      TrainState with initialized optimizer, with parameters copied to devices.
    """

    def _restore_path(path, cfg):
      restore_checkpointer = cfg.checkpointer_cls(
          train_state=self.global_train_state_shape,
          partitioner=self._partitioner,
          checkpoints_dir='',  # unused for restore
          dataset_iterator=ds_iter if cfg.restore_dataset else None,
          restore_dtype=jnp.dtype(cfg.dtype) if cfg.dtype else None)

      from_tensorflow = gfile.exists(path + '.index')
      if from_tensorflow and cfg.state_transformation_fns:
        raise ValueError('Cannot initialize from a TensorFlow checkpoint using '
                         '`state_transformation_fns`.')
      if from_tensorflow:
        logging.info('Initializing parameters from TensorFlow checkpoint %s',
                     path)
        return restore_checkpointer.restore_from_tf_checkpoint(
            path, strict=cfg.strict)

      else:
        fallback_state = get_fallback_state(
            cfg, lambda rng: self.from_scratch(rng).state_dict(), init_rng)

        logging.info('Initializing parameters from specific T5X checkpoint %s',
                     path)
        return restore_checkpointer.restore(
            path=path,
            state_transformation_fns=cfg.state_transformation_fns,
            fallback_state=fallback_state)

    restore_cfg, paths = get_first_valid_restore_config_and_paths(restore_cfgs)
    for path in paths:
      yield _restore_path(path, restore_cfg)

  def from_checkpoint(
      self,
      ckpt_cfgs: Sequence[RestoreCheckpointConfig],
      *,
      ds_iter: Optional[tf.data.Iterator] = None,
      init_rng: Optional[jnp.ndarray] = None
  ) -> Optional[train_state_lib.TrainState]:
    """Restores (at most) 1 checkpoint using `from_checkpoints`, or dies."""
    train_states = list(
        self.from_checkpoints(ckpt_cfgs, ds_iter=ds_iter, init_rng=init_rng))
    if len(train_states) > 1:
      raise ValueError(
          f'Expected at most 1 checkpoint but got {len(train_states)} for '
          f'config(s): {ckpt_cfgs}')
    return (train_states[0]) if train_states else None

  def from_checkpoint_or_scratch(
      self,
      ckpt_cfgs: Sequence[RestoreCheckpointConfig],
      *,
      init_rng: Array,
      ds_iter: Optional[tf.data.Iterator] = None) -> train_state_lib.TrainState:
    """Initializes from checkpoint, if found, or from scratch."""
    return (self.from_checkpoint(ckpt_cfgs, ds_iter=ds_iter, init_rng=init_rng)
            or self.from_scratch(init_rng))


# -----------------------------------------------------------------------------
# Logging utility functions
# -----------------------------------------------------------------------------


def log_model_info(log_file: Optional[str],
                   full_train_state: train_state_lib.TrainState,
                   partitioner: partitioning.BasePartitioner):
  """Log the variable shapes information and optionally write it to a file."""
  # Only write logs on host 0.
  if jax.process_index() != 0:
    return

  state_dict = full_train_state.state_dict()
  total_num_params = jax.tree_util.tree_reduce(
      np.add, jax.tree_map(np.size, state_dict['target']))

  logical_axes = partitioner.get_logical_axes(full_train_state).state_dict()

  mesh_axes = jax.tree_map(
      lambda x: tuple(x) if x is not None else None,
      partitioner.get_mesh_axes(full_train_state).state_dict())

  def _log_info_and_write_to_file(writer, format_str, *args):
    logging.info(format_str, *args)
    if writer is not None:
      writer.write(format_str % args + '\n')

  with contextlib.ExitStack() as stack:
    writer = stack.enter_context(gfile.GFile(
        log_file, 'w')) if log_file is not None else None

    # Log params
    def _log_variable(name: str, arr: Optional[np.ndarray],
                      logical_axes: Optional[partitioning.AxisNames],
                      mesh_axes: Optional[partitioning.PartitionSpec]):
      # Log nothing on empty dict leaves, which occur with optax EmptyState().
      if isinstance(arr, dict) and not arr:
        return
      if arr is None:
        _log_info_and_write_to_file(writer, 'Variable    %-80s None', name)
        return
      if logical_axes is None or len(logical_axes) != len(arr.shape):
        shape_str = str(arr.shape)
      else:
        shape_str = '({})'.format(', '.join(
            f'{name}={dimension}'
            for name, dimension in zip(logical_axes, arr.shape)))
      _log_info_and_write_to_file(
          writer, 'Variable %-80s size %-12s shape %-40s partition spec %s',
          name, arr.size, shape_str, mesh_axes)

    jax.tree_map(
        _log_variable,
        state_utils.get_name_tree(state_dict['target'], keep_empty_nodes=True),
        state_dict['target'], logical_axes['target'], mesh_axes['target'])

    _log_info_and_write_to_file(writer, 'Total number of parameters: %d',
                                total_num_params)

    # Add a blank line between params and states.
    _log_info_and_write_to_file(writer, '')

    jax.tree_map(
        _log_variable,
        state_utils.get_name_tree(state_dict['state'], keep_empty_nodes=True),
        state_dict['state'], logical_axes['state'], mesh_axes['state'])


# -----------------------------------------------------------------------------
# Utility functions for prediction and evaluation.
# -----------------------------------------------------------------------------


class InferStepWithRngCallable(typing_extensions.Protocol):

  def __call__(self,
               params: Mapping[str, Any],
               batch: Mapping[str, jnp.ndarray],
               rng: jnp.ndarray = None) -> PyTreeDef:
    """Runs an inference step returning a prediction or score."""
    ...


class InferStepWithoutRngCallable(typing_extensions.Protocol):

  def __call__(self, params: Mapping[str, Any],
               batch: Mapping[str, jnp.ndarray]) -> PyTreeDef:
    """Runs an inference step returning a prediction or score."""
    ...


InferStepCallable = Union[InferStepWithRngCallable, InferStepWithoutRngCallable]

# NOTE: We're not more prescriptive than PyTreeDef because that's what
# InferStepCallable expects.
_InferFnResult = Sequence[Tuple[int, PyTreeDef]]
_InferFnWithAuxResult = Tuple[_InferFnResult, Mapping[str, Sequence[Any]]]


class InferFnCallable(typing_extensions.Protocol):

  def __call__(
      self,
      ds: tf.data.Dataset,
      train_state: train_state_lib.TrainState,
      rng: Optional[jnp.ndarray] = None
  ) -> Union[_InferFnResult, _InferFnWithAuxResult]:
    """Runs inference on the dataset."""
    ...


def _remove_padding(all_inferences, all_indices):
  """Remove padded examples.

  Args:
    all_inferences: PyTree[total_examples + padding_count, ...].
    all_indices: [total_examples + padding_count].

  Returns:
    all_inferences in shape PyTree[total_examples, ...].
    all_indices in shape [total_exmamples].
  """
  non_pad_idxs = np.where(all_indices >= 0)
  all_indices = all_indices[non_pad_idxs]
  all_inferences = jax.tree_map(lambda x: x[non_pad_idxs], all_inferences)
  return all_inferences, all_indices


def get_infer_fn(infer_step: InferStepCallable, batch_size: int,
                 train_state_axes: train_state_lib.TrainState,
                 partitioner: partitioning.BasePartitioner) -> InferFnCallable:
  """Get prediction function for the SeqIO evaluator.

  The returned prediction function should take in an enumerated dataset, make
  predictions and return in an enumerated form with the original indices and
  examples zipped together. This ensures that the predictions are compared to
  the targets in a correct order even if the dataset is sharded across
  multiple hosts and gathered in a nondeterministic way.

  jax.process_index == 0 is used as a "main host", i.e., it gathers all
  inference results and returns.

  Shape notation:
    Per replica set num replicas: R
    Per replica set batch size: B
    Number of replica sets: H
    Length: L

    Some transformations have shape transformation annotation, e.g.,
    [B, L] -> [R, B/R, L].

  Args:
    infer_step: a callable that executes one prediction step. Should not yet be
      partitioned or pmapped.
    batch_size: the global infer batch size.
    train_state_axes: Partitioning info for the train state object.
    partitioner: partitioner to use.

  Returns:
    predict_fn: a callable which takes in the enumerated infer dataset and an
      optimizer and runs the prediction.
  """

  def infer_step_with_indices(params, batch, rng, indices):
    if 'rng' in inspect.signature(infer_step).parameters:
      res = typing.cast(InferStepWithRngCallable, infer_step)(params, batch,
                                                              rng)
    else:
      res = typing.cast(InferStepWithoutRngCallable, infer_step)(params, batch)
    return indices, res

  partitioned_infer_step = partitioner.partition(
      infer_step_with_indices,
      in_axis_resources=(train_state_axes.params,
                         partitioner.data_partition_spec, None,
                         partitioner.data_partition_spec),
      out_axis_resources=(None, None))

  data_layout = partitioner.get_data_layout(batch_size)
  shard_id = data_layout.shard_id
  num_shards = data_layout.num_shards

  per_shard_batch_size = batch_size // num_shards

  def infer_fn(ds: tf.data.Dataset,
               train_state: train_state_lib.TrainState,
               rng: Optional[jnp.ndarray] = None):
    ds_shapes = jax.tree_map(lambda x: jnp.array(x.shape), ds.element_spec)
    multihost_utils.assert_equal(
        ds_shapes, 'Dataset element shapes do not agree across hosts. '
        'This could be an indication that the dataset is nondeterministic.')
    try:
      original_ds_length = len(ds)
      dataset_remainder = original_ds_length % batch_size  # pytype:disable=wrong-arg-types
      logging.info('length of dataset = %s', len(ds))
    except TypeError as e:
      if str(e) == 'dataset length is unknown.':
        logging.warning(
            'The following error is likely due to the use of TensorFlow v1 in '
            'your dataset pipeline. Verify you are not importing from '
            '`tf.compat.v1` as part of your pipeline.')
      raise e

    if dataset_remainder:
      dataset_pad_amt = batch_size - dataset_remainder
      logging.info(
          'Padding infer dataset with %d examples for even per-replica shards.',
          dataset_pad_amt)
      # Pad with the first example using an index of -1 so seqio will ignore.
      pad_ds = ds.take(1).map(lambda i, x: (np.int64(-1), x)).repeat(
          dataset_pad_amt)
      ds = ds.concatenate(pad_ds)

    # Shard the infer dataset across replica sets.
    sharded_ds = ds.shard(num_shards, shard_id).batch(
        per_shard_batch_size, drop_remainder=True)
    multihost_utils.assert_equal(
        jnp.array(len(sharded_ds)),
        'Dataset lengths do not agree across hosts.')

    logging.info(
        'The infer dataset is sharded into %d shards with per-shard '
        'batch size of %d', num_shards, per_shard_batch_size)

    # Run inference for each replica set.
    batched_results, all_indices = [], []
    for index, infer_batch in sharded_ds.as_numpy_iterator():
      if rng is None:
        step_rng = None
      else:
        step_rng, rng = jax.random.split(rng)
      # Run fast inference on batch.
      # [B, ...] -> [B * shard_count, ...]
      # partitioned_infer_step executes infer_step on sharded batched data, and
      # returns de-sharded batched indices and result replicated on all hosts.
      batch_indices, batch_result = partitioned_infer_step(
          train_state.params, infer_batch, step_rng, index)
      logging.info('Inference of batch %s done.', index)

      # Issue asynchronous copy request which serves as prefetching to the host.
      def _copy_to_host_async(x):
        if isinstance(x, GlobalDeviceArray):
          x.local_data(0).copy_to_host_async()  # GDA is fully replicated
          return x.local_data(0)
        else:
          x.copy_to_host_async()
          return x

      try:
        batch_result = jax.tree_map(_copy_to_host_async, batch_result)
        batch_indices = jax.tree_map(_copy_to_host_async, batch_indices)
      except AttributeError:
        # Similar to jax.device_get, we skip transfers for non DeviceArrays.
        pass

      batched_results.append(batch_result)
      all_indices.append(batch_indices)

    logging.info('Inference of all batches done.')
    all_inferences = batched_results

    # List[B * shard_count, ...] -> [B * shard_count * batch_count, ...]
    all_inferences = jax.tree_multimap(lambda *args: np.concatenate(args),
                                       *all_inferences)
    all_indices = np.concatenate(all_indices)

    all_inferences, all_indices = _remove_padding(all_inferences, all_indices)

    # Results are returned from infer_step out of order due to shard operation.
    # Note: remove padding first, as -1 indices would mess up this operation.
    # Note: all_inferences may be a PyTree, not just an array, e.g. if
    # `infer_step` is `model.predict_batch_with_aux`.
    all_inferences = jax.tree_map(lambda x: x[all_indices], all_inferences)
    all_indices = all_indices[all_indices]

    # aux_values is supposed to be a dictionary that maps strings to a set of
    # auxiliary values.
    #
    # We don't want to flatten/unflatten the aux values. We want to preserve the
    # unflattened values with the type List[Mapping[str, Sequence[Any]]]. We do
    # this as a memory optimization to avoid lots of redundant keys if we'd
    # instead had List[Mapping[str, Any]].
    #
    # It has shape Mapping[str, [B * shard_count * batch_count, ...]]. That is,
    # the first dimension of each of the values in aux_values is equal to
    # len(all_inferences).
    aux_values = None
    if (isinstance(all_inferences, tuple) and len(all_inferences) == 2 and
        isinstance(all_inferences[1], Mapping)):
      all_inferences, aux_values = all_inferences

    # Translate to List[...] by flattening inferences making sure to
    # preserve structure of individual elements (inferences are not assumed to
    # be simple np.array). Finally, zip inferences with corresponding indices
    # and convert leaf np.arrays into lists.
    all_inferences, struct = jax.tree_flatten(all_inferences)
    all_inferences = map(
        functools.partial(jax.tree_unflatten, struct), zip(*all_inferences))
    indices_and_outputs = list(zip(all_indices, all_inferences))
    indices_and_outputs = jax.tree_map(lambda x: np.array(x).tolist(),
                                       indices_and_outputs)
    if len(indices_and_outputs) != original_ds_length:
      raise ValueError(
          'Size of indices_and_outputs does not match length of original '
          'dataset: %d versus %d' %
          (len(indices_and_outputs), original_ds_length))

    if aux_values is None:
      return indices_and_outputs
    else:
      aux_values = jax.tree_map(lambda x: np.array(x).tolist(), aux_values)
      return indices_and_outputs, aux_values

  return infer_fn


# -----------------------------------------------------------------------------
# SeqIO utility functions.
# -----------------------------------------------------------------------------


def import_module(module: str):
  """Imports the given module at runtime."""
  logging.info('Importing %s.', module)
  try:
    importlib.import_module(module)
  except RuntimeError as e:
    if (str(e) ==
        'Attempted to add a new configurable after the config was locked.'):
      raise RuntimeError(
          'Your Task/Mixture module contains gin configurables that must be '
          'loaded before gin flag parsing. One fix is to add '
          f"'import {module}' in your gin file.")
    raise e


def get_vocabulary(
    cfg: DatasetConfig) -> Tuple[seqio.Vocabulary, seqio.Vocabulary]:
  """Returns `seqio.Vocabulary` objects associated with the `Mixture`/`Task`.

  Args:
    cfg: the DatasetConfig specifying which mixture or task to get the
      vocabularies for.

  Returns:
    A tuple of seqio.Vocabulary for inputs and targets.

  Raises:
    ValueError: if inputs and targets are not both present and vocabularies
      are different.
  """
  if cfg.module:
    warnings.warn(
        'The use of `DatasetConfig.module` and `MIXTURE_OR_TASK_MODULE` is '
        'deprecated in favor of importing the module directly or via gin.',
        DeprecationWarning)
    import_module(cfg.module)

  provider = seqio.get_mixture_or_task(cfg.mixture_or_task_name)
  features = provider.output_features

  if 'inputs' in features and 'targets' in features:
    return (features['inputs'].vocabulary, features['targets'].vocabulary)

  # If a mix of PassThroughVocabularies and other Vocabularies are specified,
  # use the non-PassThroughVocabularies.
  # TODO(b/185912004): Remove this once a more general solution is implemented.
  vocabularies = list(
      f.vocabulary
      for f in features.values()
      if not isinstance(f.vocabulary, seqio.PassThroughVocabulary))

  # Otherwise, if all of the vocabs are PassThroughVocabularies, use those.
  if not vocabularies:
    vocabularies = list(f.vocabulary for f in features.values())

  # If there still aren't any vocabularies, raise an error.
  if not vocabularies:
    raise ValueError('"inputs" and "targets" are not both present, and '
                     'no vocabularies were set for any features.')

  first_vocab = vocabularies[0]
  for vocab in vocabularies[1:]:
    if vocab != first_vocab:
      raise ValueError('"inputs" and "targets" are not both present, and '
                       'vocabularies are different.')
  return (first_vocab, first_vocab)




def get_dataset(cfg: DatasetConfig,
                shard_id: int,
                num_shards: int,
                feature_converter_cls: Type[seqio.FeatureConverter],
                num_epochs: Optional[int] = None,
                continue_from_last_checkpoint: bool = False) -> tf.data.Dataset:
  """Returns a dataset from SeqIO based on a `DatasetConfig`."""
  if continue_from_last_checkpoint:
    raise ValueError(
        '`continue_from_last_checkpoint` must be set to False as this is not '
        'supported by this dataset fn.')
  del continue_from_last_checkpoint

  if cfg.module:
    import_module(cfg.module)

  if cfg.batch_size % num_shards:
    raise ValueError(
        f'Batch size ({cfg.batch_size}) must be divisible by number of '
        f'shards ({num_shards}).')


  shard_info = seqio.ShardInfo(index=shard_id, num_shards=num_shards)

  if cfg.seed is None:
    # Use a shared timestamp across devices as the seed.
    seed = multihost_utils.broadcast_one_to_all(np.int32(time.time()))
  else:
    seed = cfg.seed

  return get_dataset_inner(cfg, shard_info, feature_converter_cls, seed,
                           num_epochs)


def get_dataset_inner(cfg: DatasetConfig,
                      shard_info: seqio.ShardInfo,
                      feature_converter_cls: Type[seqio.FeatureConverter],
                      seed: Optional[int] = None,
                      num_epochs: Optional[int] = None):
  """Internal fn to load a dataset from SeqIO based on a `DatasetConfig`."""
  batch_size = cfg.batch_size // shard_info.num_shards
  if seed is not None:
    multihost_utils.assert_equal(
        np.array(seed),
        f'`seed` is not same across hosts; {jax.process_index} has a seed of '
        f'{seed}')
    logging.info(
        "Initializing dataset for task '%s' with a replica batch size of %d and "
        'a seed of %d', cfg.mixture_or_task_name, batch_size, seed)

  ds = seqio.get_dataset(
      mixture_or_task_name=cfg.mixture_or_task_name,
      task_feature_lengths=cfg.task_feature_lengths,
      dataset_split=cfg.split,
      shuffle=cfg.shuffle,
      num_epochs=num_epochs,
      feature_converter=feature_converter_cls(
          pack=cfg.pack, use_custom_packing_ops=cfg.use_custom_packing_ops),  # pytype: disable=not-instantiable
      shard_info=shard_info,
      use_cached=cfg.use_cached,
      seed=seed)
  ds = ds.batch(batch_size, drop_remainder=True)
  return ds


class GetDatasetCallable(typing_extensions.Protocol):
  """Interface for a function returning a dataset (iterator)."""

  def __call__(
      self,
      cfg: DatasetConfig,
      shard_id: int,
      num_shards: int,
      feature_converter_cls: Callable[..., seqio.FeatureConverter],
      num_epochs: Optional[int] = None,
      continue_from_last_checkpoint: bool = True
  ) -> Union[clu.data.DatasetIterator, tf.data.Dataset]:
    ...


def get_training_eval_datasets(
    cfg: DatasetConfig,
    shard_id: int,
    num_shards: int,
    eval_steps: int,
    feature_converter_cls: Callable[..., seqio.FeatureConverter],
    get_dataset_fn: GetDatasetCallable = get_dataset,
) -> Mapping[str, tf.data.Dataset]:
  """Returns a mapping from eval task name to its dataset."""
  mixture_or_task = seqio.get_mixture_or_task(cfg.mixture_or_task_name)
  datasets = {}

  if cfg.batch_size % num_shards:
    raise ValueError(
        f'Batch size ({cfg.batch_size}) must be divisible by number of '
        f'shards ({num_shards}).')

  def _repeat_shard_batch_take_cache(ds: tf.data.Dataset):
    # We shard and batch the full, repeated dataset to avoid issues with uneven
    # file shards.
    if not isinstance(ds, tf.data.Dataset):
      raise ValueError('Only tf.data.Dataset objects supported.')
    return ds.unbatch().repeat().shard(num_shards, shard_id).batch(
        cfg.batch_size // num_shards,
        drop_remainder=True).take(eval_steps).cache()

  for task in seqio.get_subtasks(mixture_or_task):
    if cfg.split not in task.splits:
      logging.info("Task %s has no '%s' split; skipping training evaluation.",
                   task.name, cfg.split)
      continue
    logging.info('Loading task %s for training evaluation.', task.name)
    task_cfg = dataclasses.replace(
        cfg, mixture_or_task_name=task.name, batch_size=1)
    # We set `num_epochs` to be finite to avoid infinite loops on shards that
    # have input examples that are all filtered.
    datasets[task.name] = _repeat_shard_batch_take_cache(
        get_dataset_fn(
            task_cfg,
            shard_id=0,
            num_shards=1,
            feature_converter_cls=feature_converter_cls,
            num_epochs=eval_steps * cfg.batch_size,
            continue_from_last_checkpoint=False))

  if isinstance(mixture_or_task, seqio.Mixture):
    datasets[mixture_or_task.name] = _repeat_shard_batch_take_cache(
        get_dataset_fn(
            dataclasses.replace(cfg, batch_size=1),
            shard_id=0,
            num_shards=1,
            feature_converter_cls=feature_converter_cls,
            num_epochs=eval_steps * cfg.batch_size,
            continue_from_last_checkpoint=False))

  return datasets


def round_vocab_size_to_multiple(vocabulary: seqio.Vocabulary,
                                 divisor: int = 128):
  """Round up vocabulary size for improved TPU performance."""
  size = vocabulary.vocab_size
  return size + -size % divisor


def flatten_dict_string_keys(x):
  """Flattens a nested dictionary to have string keys and '/' separators."""
  return traverse_util.flatten_dict(flax.core.unfreeze(x), sep='/')


class _RegexMap(collections.abc.Mapping):
  """Ordered mapping from regexes to values requiring a full match."""

  def __init__(self, kvs: Sequence[Tuple[str, Any]]):
    self._kvs = [(re.compile(k), v) for k, v in kvs]

  def __getitem__(self, key: str) -> Any:
    for pattern, v in self._kvs:
      if pattern.fullmatch(key):
        return v
    raise KeyError(f'No pattern matching key: {key}')

  def __len__(self) -> int:
    return len(self._kvs)

  def __iter__(self) -> Iterable[Tuple[re.Pattern, Any]]:
    return iter(self._kvs)


def override_params_axes_names(
    model_variables: flax_scope.FrozenVariableDict,
    params_axes_names_override: Sequence[Tuple[str, Tuple[str, ...]]] = ()
) -> flax_scope.FrozenVariableDict:
  """Applies parameter axis names overrides to axes variables.

  Args:
    model_variables: the original model variables containing the 'params_axes'
      collection.
    params_axes_names_override: a priority-ordered mapping from regex patterns
      (fully matching parameter names) to tuples containing string logical axis
      names to replace model-derived names.

  Returns:
    an updated set of model variables with the overrides applied to the
    'params_axes' collection.
  """
  params_axes_names_override_map = _RegexMap(params_axes_names_override)

  if 'params_axes' not in model_variables:
    raise ValueError(
        "Model variables do not contain a 'params_axes' collection to apply an "
        'override to.')
  model_variables = model_variables.unfreeze()
  flat_params = traverse_util.flatten_dict(model_variables['params'])
  flat_params_axes = traverse_util.flatten_dict(model_variables['params_axes'])

  for key, param in flat_params.items():
    param_name = '/'.join(key)
    override = params_axes_names_override_map.get(param_name)
    if override is None:
      continue

    param_axes_key = key[:-1] + (f'{key[-1]}_axes',)

    curr_metadata = flat_params_axes.get(param_axes_key)

    if curr_metadata is None:
      logging.info('Adding axis names for %s: %s', param_name, override)
    else:
      assert isinstance(curr_metadata, flax_partitioning.AxisMetadata)
      logging.info('Replacing axis names for %s (%s) with %s.', param_name,
                   curr_metadata.names, override)

    if param.ndim != len(override):
      raise ValueError(
          f'Provided axis name override for {param_name} does not match '
          f'param rank ({param.ndim}): {override}')
    flat_params_axes[param_axes_key] = flax_partitioning.AxisMetadata(
        names=override)

  model_variables['params_axes'] = traverse_util.unflatten_dict(
      flat_params_axes)
  return flax.core.freeze(model_variables)




def get_local_data(x):
  if isinstance(x, GlobalDeviceArray):
    return x.local_data(0)
  elif isinstance(x, pxla.ShardedDeviceArray):
    val = x.device_buffers[0]
    if val.aval is None:
      val.aval = jax.ShapedArray(val.shape, val.dtype)
    return val
  else:
    return x