Spaces:
Build error
Build error
File size: 8,754 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# Copyright 2022 The MT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Detect monophonic tracks and extract notes."""
import collections
import os
from absl import app
from absl import flags
from absl import logging
import ddsp
import librosa
import note_seq
import numpy as np
import scipy
import tensorflow as tf
_INPUT_DIR = flags.DEFINE_string(
'input_dir', None,
'Input directory containing WAV files.')
_OUTPUT_TFRECORD_PATH = flags.DEFINE_string(
'output_tfrecord_path', None,
'Path to the output TFRecord containing tf.train.Example protos with '
'monophonic tracks and inferred NoteSequence protos.')
CREPE_SAMPLE_RATE = 16000
CREPE_FRAME_RATE = 100
MONOPHONIC_CONFIDENCE_THRESHOLD = 0.95 # confidence must be greater than this
MONOPHONIC_CONFIDENCE_FRAC = 0.2 # for this fraction of frames
# split input audio into clips
CLIP_LENGTH_SECONDS = 5
def is_monophonic_heuristic(f0_confidence):
"""Heuristic to check for monophonicity using f0 confidence."""
return (np.sum(f0_confidence >= MONOPHONIC_CONFIDENCE_THRESHOLD) /
len(f0_confidence) >= MONOPHONIC_CONFIDENCE_FRAC)
# HMM parameters for modeling notes and F0 tracks.
F0_MIDI_SIGMA = 0.2
OCTAVE_ERROR_PROB = 0.05
NOTES_PER_SECOND = 2
NOTE_CHANGE_PROB = NOTES_PER_SECOND / CREPE_FRAME_RATE
F0_CONFIDENCE_EXP = 7.5
def f0_hmm_matrices(f0_hz, f0_confidence):
"""Observation and transition matrices for hidden Markov model of F0."""
f0_midi = librosa.hz_to_midi(f0_hz)
f0_midi_diff = f0_midi[:, np.newaxis] - np.arange(128)[np.newaxis, :]
# Compute the probability of each pitch at each frame, taking octave errors
# into account.
f0_midi_prob_octave_correct = scipy.stats.norm.pdf(
f0_midi_diff, scale=F0_MIDI_SIGMA)
f0_midi_prob_octave_low = scipy.stats.norm.pdf(
f0_midi_diff + 12, scale=F0_MIDI_SIGMA)
f0_midi_prob_octave_high = scipy.stats.norm.pdf(
f0_midi_diff - 12, scale=F0_MIDI_SIGMA)
# distribution of pitch values given note
f0_midi_loglik = ((1 - OCTAVE_ERROR_PROB) * f0_midi_prob_octave_correct +
0.5 * OCTAVE_ERROR_PROB * f0_midi_prob_octave_low +
0.5 * OCTAVE_ERROR_PROB * f0_midi_prob_octave_high)
# (uniform) distribution of pitch values given rest
f0_midi_rest_loglik = -np.log(128)
# Here we interpret confidence, after adjusting by exponent, as P(not rest).
f0_confidence_prob = np.power(f0_confidence, F0_CONFIDENCE_EXP)[:, np.newaxis]
obs_loglik = np.concatenate([
# probability of note (normalized by number of possible notes)
f0_midi_loglik + np.log(f0_confidence_prob) - np.log(128),
# probability of rest
f0_midi_rest_loglik + np.log(1.0 - f0_confidence_prob)
], axis=1)
# Normalize to adjust P(confidence | note) by uniform P(note).
# TODO(iansimon): Not sure how correct this is but it doesn't affect the path.
obs_loglik += np.log(129)
trans_prob = ((NOTE_CHANGE_PROB / 128) * np.ones(129) +
(1 - NOTE_CHANGE_PROB - NOTE_CHANGE_PROB / 128) * np.eye(129))
trans_loglik = np.log(trans_prob)
return obs_loglik, trans_loglik
def hmm_forward(obs_loglik, trans_loglik):
"""Forward algorithm for a hidden Markov model."""
n, k = obs_loglik.shape
trans = np.exp(trans_loglik)
loglik = 0.0
l = obs_loglik[0] - np.log(k)
c = scipy.special.logsumexp(l)
loglik += c
for i in range(1, n):
p = np.exp(l - c)
l = np.log(np.dot(p, trans)) + obs_loglik[i]
c = scipy.special.logsumexp(l)
loglik += c
return loglik
def hmm_viterbi(obs_loglik, trans_loglik):
"""Viterbi algorithm for a hidden Markov model."""
n, k = obs_loglik.shape
loglik_matrix = np.zeros_like(obs_loglik)
path_matrix = np.zeros_like(obs_loglik, dtype=np.int32)
loglik_matrix[0, :] = obs_loglik[0, :] - np.log(k)
for i in range(1, n):
mat = np.tile(loglik_matrix[i - 1][:, np.newaxis], [1, 129]) + trans_loglik
path_matrix[i, :] = mat.argmax(axis=0)
loglik_matrix[i, :] = mat[path_matrix[i, :], range(129)] + obs_loglik[i]
path = [np.argmax(loglik_matrix[-1])]
for i in range(n, 1, -1):
path.append(path_matrix[i - 1, path[-1]])
return [(pitch if pitch < 128 else None) for pitch in path[::-1]]
def pitches_to_notesequence(pitches):
"""Convert sequence of pitches output by Viterbi to NoteSequence proto."""
ns = note_seq.NoteSequence(ticks_per_quarter=220)
current_pitch = None
start_time = None
for frame, pitch in enumerate(pitches):
time = frame / CREPE_FRAME_RATE
if pitch != current_pitch:
if current_pitch is not None:
ns.notes.add(
pitch=current_pitch, velocity=100,
start_time=start_time, end_time=time)
current_pitch = pitch
start_time = time
if current_pitch is not None:
ns.notes.add(
pitch=current_pitch, velocity=100,
start_time=start_time, end_time=len(pitches) / CREPE_FRAME_RATE)
if ns.notes:
ns.total_time = ns.notes[-1].end_time
return ns
# Per-frame log likelihood threshold below which an F0 track will be discarded.
# Note that this is dependent on the HMM parameters specified above, so if those
# change then this threshold should also change.
PER_FRAME_LOGLIK_THRESHOLD = 0.3
def extract_note_sequence(crepe, samples, counters):
"""Use CREPE to attempt to extract a monophonic NoteSequence from audio."""
f0_hz, f0_confidence = crepe.predict_f0_and_confidence(
samples[np.newaxis, :], viterbi=False)
f0_hz = f0_hz[0].numpy()
f0_confidence = f0_confidence[0].numpy()
if not is_monophonic_heuristic(f0_confidence):
counters['not_monophonic'] += 1
return None
obs_loglik, trans_loglik = f0_hmm_matrices(f0_hz, f0_confidence)
loglik = hmm_forward(obs_loglik, trans_loglik)
if loglik / len(obs_loglik) < PER_FRAME_LOGLIK_THRESHOLD:
counters['low_likelihood'] += 1
return None
pitches = hmm_viterbi(obs_loglik, trans_loglik)
ns = pitches_to_notesequence(pitches)
counters['extracted_monophonic_sequence'] += 1
return ns
def process_wav_file(wav_filename, crepe, counters):
"""Extract monophonic transcription examples from a WAV file."""
wav_data = tf.io.gfile.GFile(wav_filename, 'rb').read()
samples = note_seq.audio_io.wav_data_to_samples_librosa(
wav_data, sample_rate=CREPE_SAMPLE_RATE)
clip_length_samples = int(CREPE_SAMPLE_RATE * CLIP_LENGTH_SECONDS)
for start_sample in range(0, len(samples), clip_length_samples):
clip_samples = samples[start_sample:start_sample + clip_length_samples]
if len(clip_samples) < clip_length_samples:
clip_samples = np.pad(
clip_samples, [(0, clip_length_samples - len(clip_samples))])
ns = extract_note_sequence(crepe, clip_samples, counters)
if ns:
feature = {
'audio': tf.train.Feature(
float_list=tf.train.FloatList(value=clip_samples.tolist())),
'filename': tf.train.Feature(
bytes_list=tf.train.BytesList(value=[wav_filename.encode()])),
'offset': tf.train.Feature(
int64_list=tf.train.Int64List(value=[start_sample])),
'sampling_rate': tf.train.Feature(
float_list=tf.train.FloatList(value=[CREPE_SAMPLE_RATE])),
'sequence': tf.train.Feature(
bytes_list=tf.train.BytesList(value=[ns.SerializeToString()]))
}
yield tf.train.Example(features=tf.train.Features(feature=feature))
def main(unused_argv):
flags.mark_flags_as_required(['input_dir', 'output_tfrecord_path'])
crepe = ddsp.spectral_ops.PretrainedCREPE('full')
counters = collections.defaultdict(int)
with tf.io.TFRecordWriter(_OUTPUT_TFRECORD_PATH.value) as writer:
for filename in tf.io.gfile.listdir(_INPUT_DIR.value):
if not filename.endswith('.wav'):
logging.info('skipping %s...', filename)
counters['non_wav_files_skipped'] += 1
continue
logging.info('processing %s...', filename)
for ex in process_wav_file(
os.path.join(_INPUT_DIR.value, filename), crepe, counters):
writer.write(ex.SerializeToString())
counters['wav_files_processed'] += 1
for k, v in counters.items():
logging.info('COUNTER: %s = %d', k, v)
if __name__ == '__main__':
app.run(main)
|