Spaces:
Build error
Build error
File size: 32,486 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
# Copyright 2022 The MT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dense attention classes and mask/weighting functions."""
# pylint: disable=attribute-defined-outside-init,g-bare-generic
import dataclasses
import functools
import operator
from typing import Any, Callable, Iterable, Optional, Sequence, Tuple, Union
from flax import linen as nn
from flax.linen import partitioning as nn_partitioning
import jax
from jax import lax
from jax import random
import jax.numpy as jnp
import numpy as np
# from flax.linen.partitioning import param_with_axes, with_sharding_constraint
param_with_axes = nn_partitioning.param_with_axes
with_sharding_constraint = nn_partitioning.with_sharding_constraint
# Type annotations
Array = jnp.ndarray
DType = jnp.dtype
PRNGKey = jnp.ndarray
Shape = Iterable[int]
Activation = Callable[..., Array]
# Parameter initializers.
Initializer = Callable[[PRNGKey, Shape, DType], Array]
default_embed_init = nn.initializers.variance_scaling(
1.0, 'fan_in', 'normal', out_axis=0)
def sinusoidal(min_scale: float = 1.0,
max_scale: float = 10000.0,
dtype: DType = jnp.float32) -> Initializer:
"""Creates 1D Sinusoidal Position Embedding Initializer.
Args:
min_scale: Minimum frequency-scale in sine grating.
max_scale: Maximum frequency-scale in sine grating.
dtype: The DType of the returned values.
Returns:
The sinusoidal initialization function.
"""
def init(key: PRNGKey, shape: Shape, dtype: DType = dtype) -> Array:
"""Sinusoidal init."""
del key
if dtype != np.float32:
raise ValueError('The sinusoidal initializer only supports float32.')
if len(list(shape)) != 2:
raise ValueError(
f'Expected a 2D shape (max_len, features), but got {shape}.')
max_len, features = shape
pe = np.zeros((max_len, features), dtype=dtype)
position = np.arange(0, max_len)[:, np.newaxis]
scale_factor = -np.log(max_scale / min_scale) / (features // 2 - 1)
div_term = min_scale * np.exp(np.arange(0, features // 2) * scale_factor)
pe[:, :features // 2] = np.sin(position * div_term)
pe[:, features // 2:2 * (features // 2)] = np.cos(position * div_term)
return jnp.array(pe)
return init
def dot_product_attention(query: Array,
key: Array,
value: Array,
bias: Optional[Array] = None,
dropout_rng: Optional[PRNGKey] = None,
dropout_rate: float = 0.,
deterministic: bool = False,
dtype: DType = jnp.float32,
float32_logits: bool = False):
"""Computes dot-product attention given query, key, and value.
This is the core function for applying attention based on
https://arxiv.org/abs/1706.03762. It calculates the attention weights given
query and key and combines the values using the attention weights.
Args:
query: queries for calculating attention with shape of `[batch, q_length,
num_heads, qk_depth_per_head]`.
key: keys for calculating attention with shape of `[batch, kv_length,
num_heads, qk_depth_per_head]`.
value: values to be used in attention with shape of `[batch, kv_length,
num_heads, v_depth_per_head]`.
bias: bias for the attention weights. This should be broadcastable to the
shape `[batch, num_heads, q_length, kv_length]` This can be used for
incorporating causal masks, padding masks, proximity bias, etc.
dropout_rng: JAX PRNGKey: to be used for dropout
dropout_rate: dropout rate
deterministic: bool, deterministic or not (to apply dropout)
dtype: the dtype of the computation (default: float32)
float32_logits: bool, if True then compute logits in float32 to avoid
numerical issues with bfloat16.
Returns:
Output of shape `[batch, length, num_heads, v_depth_per_head]`.
"""
assert key.ndim == query.ndim == value.ndim, 'q, k, v must have same rank.'
assert query.shape[:-3] == key.shape[:-3] == value.shape[:-3], (
'q, k, v batch dims must match.')
assert query.shape[-2] == key.shape[-2] == value.shape[-2], (
'q, k, v num_heads must match.')
assert key.shape[-3] == value.shape[-3], 'k, v lengths must match.'
assert query.shape[-1] == key.shape[-1], 'q, k depths must match.'
# Casting logits and softmax computation for float32 for model stability.
if float32_logits:
query = query.astype(jnp.float32)
key = key.astype(jnp.float32)
# `attn_weights`: [batch, num_heads, q_length, kv_length]
attn_weights = jnp.einsum('bqhd,bkhd->bhqk', query, key)
# Apply attention bias: masking, dropout, proximity bias, etc.
if bias is not None:
attn_weights = attn_weights + bias.astype(attn_weights.dtype)
# Normalize the attention weights across `kv_length` dimension.
attn_weights = jax.nn.softmax(attn_weights).astype(dtype)
# Apply attention dropout.
if not deterministic and dropout_rate > 0.:
keep_prob = 1.0 - dropout_rate
# T5 broadcasts along the "length" dim, but unclear which one that
# corresponds to in positional dimensions here, assuming query dim.
dropout_shape = list(attn_weights.shape)
dropout_shape[-2] = 1
keep = random.bernoulli(dropout_rng, keep_prob, dropout_shape)
keep = jnp.broadcast_to(keep, attn_weights.shape)
multiplier = (
keep.astype(attn_weights.dtype) / jnp.asarray(keep_prob, dtype=dtype))
attn_weights = attn_weights * multiplier
# Take the linear combination of `value`.
return jnp.einsum('bhqk,bkhd->bqhd', attn_weights, value)
dynamic_vector_slice_in_dim = jax.vmap(
lax.dynamic_slice_in_dim, in_axes=(None, 0, None, None))
class MultiHeadDotProductAttention(nn.Module):
"""Multi-head dot-product attention.
Attributes:
num_heads: number of attention heads. Features (i.e. inputs_q.shape[-1])
should be divisible by the number of heads.
head_dim: dimension of each head.
dtype: the dtype of the computation.
dropout_rate: dropout rate
kernel_init: initializer for the kernel of the Dense layers.
float32_logits: bool, if True then compute logits in float32 to avoid
numerical issues with bfloat16.
"""
num_heads: int
head_dim: int
dtype: DType = jnp.float32
dropout_rate: float = 0.
kernel_init: Initializer = nn.initializers.variance_scaling(
1.0, 'fan_in', 'normal')
float32_logits: bool = False # computes logits in float32 for stability.
@nn.compact
def __call__(self,
inputs_q: Array,
inputs_kv: Array,
mask: Optional[Array] = None,
bias: Optional[Array] = None,
*,
decode: bool = False,
deterministic: bool = False) -> Array:
"""Applies multi-head dot product attention on the input data.
Projects the inputs into multi-headed query, key, and value vectors,
applies dot-product attention and project the results to an output vector.
There are two modes: decoding and non-decoding (e.g., training). The mode is
determined by `decode` argument. For decoding, this method is called twice,
first to initialize the cache and then for an actual decoding process. The
two calls are differentiated by the presence of 'cached_key' in the variable
dict. In the cache initialization stage, the cache variables are initialized
as zeros and will be filled in the subsequent decoding process.
In the cache initialization call, `inputs_q` has a shape [batch, length,
q_features] and `inputs_kv`: [batch, length, kv_features]. During the
incremental decoding stage, query, key and value all have the shape [batch,
1, qkv_features] corresponding to a single step.
Args:
inputs_q: input queries of shape `[batch, q_length, q_features]`.
inputs_kv: key/values of shape `[batch, kv_length, kv_features]`.
mask: attention mask of shape `[batch, num_heads, q_length, kv_length]`.
bias: attention bias of shape `[batch, num_heads, q_length, kv_length]`.
decode: Whether to prepare and use an autoregressive cache.
deterministic: Disables dropout if set to True.
Returns:
output of shape `[batch, length, q_features]`.
"""
projection = functools.partial(
DenseGeneral,
axis=-1,
features=(self.num_heads, self.head_dim),
kernel_axes=('embed', 'joined_kv'),
dtype=self.dtype)
# NOTE: T5 does not explicitly rescale the attention logits by
# 1/sqrt(depth_kq)! This is folded into the initializers of the
# linear transformations, which is equivalent under Adafactor.
depth_scaling = jnp.sqrt(self.head_dim).astype(self.dtype)
query_init = lambda *args: self.kernel_init(*args) / depth_scaling
# Project inputs_q to multi-headed q/k/v
# dimensions are then [batch, length, num_heads, head_dim]
query = projection(kernel_init=query_init, name='query')(inputs_q)
key = projection(kernel_init=self.kernel_init, name='key')(inputs_kv)
value = projection(kernel_init=self.kernel_init, name='value')(inputs_kv)
query = with_sharding_constraint(query, ('batch', 'length', 'heads', 'kv'))
key = with_sharding_constraint(key, ('batch', 'length', 'heads', 'kv'))
value = with_sharding_constraint(value, ('batch', 'length', 'heads', 'kv'))
if decode:
# Detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable('cache', 'cached_key')
# The key and value have dimension [batch, length, num_heads, head_dim],
# but we cache them as [batch, num_heads, head_dim, length] as a TPU
# fusion optimization. This also enables the "scatter via one-hot
# broadcast" trick, which means we do a one-hot broadcast instead of a
# scatter/gather operations, resulting in a 3-4x speedup in practice.
swap_dims = lambda x: x[:-3] + tuple(x[i] for i in [-2, -1, -3])
cached_key = self.variable('cache', 'cached_key', jnp.zeros,
swap_dims(key.shape), key.dtype)
cached_value = self.variable('cache', 'cached_value', jnp.zeros,
swap_dims(value.shape), value.dtype)
cache_index = self.variable('cache', 'cache_index',
lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
batch, num_heads, head_dim, length = (cached_key.value.shape)
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
# Sanity shape check of cached key against input query.
expected_shape = (batch, 1, num_heads, head_dim)
if expected_shape != query.shape:
raise ValueError('Autoregressive cache shape error, '
'expected query shape %s instead got %s.' %
(expected_shape, query.shape))
# Create a OHE of the current index. NOTE: the index is increased below.
cur_index = cache_index.value
one_hot_indices = jax.nn.one_hot(cur_index, length, dtype=key.dtype)
# In order to update the key, value caches with the current key and
# value, we move the length axis to the back, similar to what we did for
# the cached ones above.
# Note these are currently the key and value of a single position, since
# we feed one position at a time.
one_token_key = jnp.moveaxis(key, -3, -1)
one_token_value = jnp.moveaxis(value, -3, -1)
# Update key, value caches with our new 1d spatial slices.
# We implement an efficient scatter into the cache via one-hot
# broadcast and addition.
key = cached_key.value + one_token_key * one_hot_indices
value = cached_value.value + one_token_value * one_hot_indices
cached_key.value = key
cached_value.value = value
cache_index.value = cache_index.value + 1
# Move the keys and values back to their original shapes.
key = jnp.moveaxis(key, -1, -3)
value = jnp.moveaxis(value, -1, -3)
# Causal mask for cached decoder self-attention: our single query
# position should only attend to those key positions that have already
# been generated and cached, not the remaining zero elements.
mask = combine_masks(
mask,
jnp.broadcast_to(
jnp.arange(length) <= cur_index,
# (1, 1, length) represent (head dim, query length, key length)
# query length is 1 because during decoding we deal with one
# index.
# The same mask is applied to all batch elements and heads.
(batch, 1, 1, length)))
# Grab the correct relative attention bias during decoding. This is
# only required during single step decoding.
if bias is not None:
# The bias is a full attention matrix, but during decoding we only
# have to take a slice of it.
# This is equivalent to bias[..., cur_index:cur_index+1, :].
bias = dynamic_vector_slice_in_dim(
jnp.squeeze(bias, axis=0), jnp.reshape(cur_index, (-1)), 1, -2)
# Convert the boolean attention mask to an attention bias.
if mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
mask > 0,
jnp.full(mask.shape, 0.).astype(self.dtype),
jnp.full(mask.shape, -1e10).astype(self.dtype))
else:
attention_bias = None
# Add provided bias term (e.g. relative position embedding).
if bias is not None:
attention_bias = combine_biases(attention_bias, bias)
dropout_rng = None
if not deterministic and self.dropout_rate > 0.:
dropout_rng = self.make_rng('dropout')
# Apply attention.
x = dot_product_attention(
query,
key,
value,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout_rate,
deterministic=deterministic,
dtype=self.dtype,
float32_logits=self.float32_logits)
# Back to the original inputs dimensions.
out = DenseGeneral(
features=inputs_q.shape[-1], # output dim is set to the input dim.
axis=(-2, -1),
kernel_init=self.kernel_init,
kernel_axes=('joined_kv', 'embed'),
dtype=self.dtype,
name='out')(
x)
return out
def _normalize_axes(axes: Iterable[int], ndim: int) -> Tuple[int]:
# A tuple by convention. len(axes_tuple) then also gives the rank efficiently.
return tuple([ax if ax >= 0 else ndim + ax for ax in axes])
def _canonicalize_tuple(x):
if isinstance(x, Iterable):
return tuple(x)
else:
return (x,)
#------------------------------------------------------------------------------
# DenseGeneral for attention layers.
#------------------------------------------------------------------------------
class DenseGeneral(nn.Module):
"""A linear transformation (without bias) with flexible axes.
Attributes:
features: tuple with numbers of output features.
axis: tuple with axes to apply the transformation on.
dtype: the dtype of the computation (default: float32).
kernel_init: initializer function for the weight matrix.
"""
features: Union[Iterable[int], int]
axis: Union[Iterable[int], int] = -1
dtype: DType = jnp.float32
kernel_init: Initializer = nn.initializers.variance_scaling(
1.0, 'fan_in', 'truncated_normal')
kernel_axes: Tuple[str, ...] = ()
@nn.compact
def __call__(self, inputs: Array) -> Array:
"""Applies a linear transformation to the inputs along multiple dimensions.
Args:
inputs: The nd-array to be transformed.
Returns:
The transformed input.
"""
features = _canonicalize_tuple(self.features)
axis = _canonicalize_tuple(self.axis)
inputs = jnp.asarray(inputs, self.dtype)
axis = _normalize_axes(axis, inputs.ndim)
kernel_shape = tuple([inputs.shape[ax] for ax in axis]) + features
kernel_param_shape = (np.prod([inputs.shape[ax] for ax in axis]),
np.prod(features))
kernel = param_with_axes(
'kernel',
self.kernel_init,
kernel_param_shape,
jnp.float32,
axes=self.kernel_axes)
kernel = jnp.asarray(kernel, self.dtype)
kernel = jnp.reshape(kernel, kernel_shape)
contract_ind = tuple(range(0, len(axis)))
return lax.dot_general(inputs, kernel, ((axis, contract_ind), ((), ())))
def _convert_to_activation_function(
fn_or_string: Union[str, Callable]) -> Callable:
"""Convert a string to an activation function."""
if fn_or_string == 'linear':
return lambda x: x
elif isinstance(fn_or_string, str):
return getattr(nn, fn_or_string)
elif callable(fn_or_string):
return fn_or_string
else:
raise ValueError("don't know how to convert %s to an activation function" %
(fn_or_string,))
class MlpBlock(nn.Module):
"""Transformer MLP / feed-forward block.
Attributes:
intermediate_dim: Shared dimension of hidden layers.
activations: Type of activations for each layer. Each element is either
'linear', a string function name in flax.linen, or a function.
kernel_init: Kernel function, passed to the dense layers.
deterministic: Whether the dropout layers should be deterministic.
intermediate_dropout_rate: Dropout rate used after the intermediate layers.
dtype: Type for the dense layer.
"""
intermediate_dim: int = 2048
activations: Sequence[Union[str, Callable]] = ('relu',)
kernel_init: Initializer = nn.initializers.variance_scaling(
1.0, 'fan_in', 'truncated_normal')
intermediate_dropout_rate: float = 0.1
dtype: Any = jnp.float32
@nn.compact
def __call__(self, inputs, decode: bool = False, deterministic: bool = False):
"""Applies Transformer MlpBlock module."""
# Iterate over specified MLP input activation functions.
# e.g. ('relu',) or ('gelu', 'linear') for gated-gelu.
activations = []
for idx, act_fn in enumerate(self.activations):
dense_name = 'wi' if len(self.activations) == 1 else f'wi_{idx}'
x = DenseGeneral(
self.intermediate_dim,
dtype=self.dtype,
kernel_init=self.kernel_init,
kernel_axes=('embed', 'mlp'),
name=dense_name)(
inputs)
x = _convert_to_activation_function(act_fn)(x)
activations.append(x)
# Take elementwise product of above intermediate activations.
x = functools.reduce(operator.mul, activations)
# Apply dropout and final dense output projection.
x = nn.Dropout(
rate=self.intermediate_dropout_rate, broadcast_dims=(-2,))(
x, deterministic=deterministic) # Broadcast along length.
x = with_sharding_constraint(x, ('batch', 'length', 'mlp'))
output = DenseGeneral(
inputs.shape[-1],
dtype=self.dtype,
kernel_init=self.kernel_init,
kernel_axes=('mlp', 'embed'),
name='wo')(
x)
return output
class Embed(nn.Module):
"""A parameterized function from integers [0, n) to d-dimensional vectors.
Attributes:
num_embeddings: number of embeddings.
features: number of feature dimensions for each embedding.
dtype: the dtype of the embedding vectors (default: float32).
embedding_init: embedding initializer.
one_hot: performs the gather with a one-hot contraction rather than a true
gather. This is currently needed for SPMD partitioning.
"""
num_embeddings: int
features: int
cast_input_dtype: Optional[DType] = None
dtype: DType = jnp.float32
attend_dtype: Optional[DType] = None
embedding_init: Initializer = default_embed_init
one_hot: bool = False
embedding: Array = dataclasses.field(init=False)
def setup(self):
self.embedding = param_with_axes(
'embedding',
self.embedding_init, (self.num_embeddings, self.features),
jnp.float32,
axes=('vocab', 'embed'))
def __call__(self, inputs: Array) -> Array:
"""Embeds the inputs along the last dimension.
Args:
inputs: input data, all dimensions are considered batch dimensions.
Returns:
Output which is embedded input data. The output shape follows the input,
with an additional `features` dimension appended.
"""
if self.cast_input_dtype:
inputs = inputs.astype(self.cast_input_dtype)
if not jnp.issubdtype(inputs.dtype, jnp.integer):
raise ValueError('Input type must be an integer or unsigned integer.')
if self.one_hot:
iota = lax.iota(jnp.int32, self.num_embeddings)
one_hot = jnp.array(inputs[..., jnp.newaxis] == iota, dtype=self.dtype)
output = jnp.dot(one_hot, jnp.asarray(self.embedding, self.dtype))
else:
output = jnp.asarray(self.embedding, self.dtype)[inputs]
output = with_sharding_constraint(output, ('batch', 'length', 'embed'))
return output
def attend(self, query: Array) -> Array:
"""Attend over the embedding using a query array.
Args:
query: array with last dimension equal the feature depth `features` of the
embedding.
Returns:
An array with final dim `num_embeddings` corresponding to the batched
inner-product of the array of query vectors against each embedding.
Commonly used for weight-sharing between embeddings and logit transform
in NLP models.
"""
dtype = self.attend_dtype if self.attend_dtype is not None else self.dtype
return jnp.dot(query, jnp.asarray(self.embedding, dtype).T)
class FixedEmbed(nn.Module):
"""Fixed (not learnable) embeddings specified by the initializer function.
Attributes:
init_fn: The initializer function that defines the embeddings.
max_length: The maximum supported length.
dtype: The DType to use for the embeddings.
"""
features: int
max_length: int = 2048
embedding_init: Initializer = sinusoidal()
dtype: jnp.dtype = jnp.float32
def setup(self):
# The key is set to None because sinusoid init is deterministic.
shape = (self.max_length, self.features)
self.embedding = self.embedding_init(None, shape, self.dtype) # pylint: disable=too-many-function-args
@nn.compact
def __call__(self,
inputs,
*,
decode: bool = False):
"""Returns the fixed position embeddings specified by the initializer.
Args:
inputs: <int>[batch_size, seq_len] input position indices.
decode: True if running in single-position autoregressive decode mode.
Returns:
The fixed position embeddings <float32>[batch_size, seq_len, features].
"""
# We use a cache position index for tracking decoding position.
if decode:
position_embedder_index = self.variable(
'cache', 'position_embedder_index',
lambda: jnp.array(-1, dtype=jnp.uint32))
i = position_embedder_index.value
position_embedder_index.value = i + 1
return jax.lax.dynamic_slice(self.embedding, jnp.array((i, 0)),
np.array((1, self.features)))
return jnp.take(self.embedding, inputs, axis=0)
#------------------------------------------------------------------------------
# T5 Layernorm - no subtraction of mean or bias.
#------------------------------------------------------------------------------
class LayerNorm(nn.Module):
"""T5 Layer normalization operating on the last axis of the input data."""
epsilon: float = 1e-6
dtype: Any = jnp.float32
scale_init: Initializer = nn.initializers.ones
@nn.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
"""Applies layer normalization on the input."""
x = jnp.asarray(x, jnp.float32)
features = x.shape[-1]
mean2 = jnp.mean(lax.square(x), axis=-1, keepdims=True)
y = jnp.asarray(x * lax.rsqrt(mean2 + self.epsilon), self.dtype)
scale = param_with_axes(
'scale', self.scale_init, (features,), jnp.float32, axes=('embed',))
scale = jnp.asarray(scale, self.dtype)
return y * scale
#------------------------------------------------------------------------------
# Mask-making utility functions.
#------------------------------------------------------------------------------
def make_attention_mask(query_input: Array,
key_input: Array,
pairwise_fn: Callable = jnp.multiply,
extra_batch_dims: int = 0,
dtype: DType = jnp.float32) -> Array:
"""Mask-making helper for attention weights.
In case of 1d inputs (i.e., `[batch, len_q]`, `[batch, len_kv]`, the
attention weights will be `[batch, heads, len_q, len_kv]` and this
function will produce `[batch, 1, len_q, len_kv]`.
Args:
query_input: a batched, flat input of query_length size
key_input: a batched, flat input of key_length size
pairwise_fn: broadcasting elementwise comparison function
extra_batch_dims: number of extra batch dims to add singleton axes for, none
by default
dtype: mask return dtype
Returns:
A `[batch, 1, len_q, len_kv]` shaped mask for 1d attention.
"""
# [batch, len_q, len_kv]
mask = pairwise_fn(
# [batch, len_q] -> [batch, len_q, 1]
jnp.expand_dims(query_input, axis=-1),
# [batch, len_q] -> [batch, 1, len_kv]
jnp.expand_dims(key_input, axis=-2))
# [batch, 1, len_q, len_kv]. This creates the head dim.
mask = jnp.expand_dims(mask, axis=-3)
mask = jnp.expand_dims(mask, axis=tuple(range(extra_batch_dims)))
return mask.astype(dtype)
def make_causal_mask(x: Array,
extra_batch_dims: int = 0,
dtype: DType = jnp.float32) -> Array:
"""Make a causal mask for self-attention.
In case of 1d inputs (i.e., `[batch, len]`, the self-attention weights
will be `[batch, heads, len, len]` and this function will produce a
causal mask of shape `[batch, 1, len, len]`.
Note that a causal mask does not depend on the values of x; it only depends on
the shape. If x has padding elements, they will not be treated in a special
manner.
Args:
x: input array of shape `[batch, len]`
extra_batch_dims: number of batch dims to add singleton axes for, none by
default
dtype: mask return dtype
Returns:
A `[batch, 1, len, len]` shaped causal mask for 1d attention.
"""
idxs = jnp.broadcast_to(jnp.arange(x.shape[-1], dtype=jnp.int32), x.shape)
return make_attention_mask(
idxs,
idxs,
jnp.greater_equal,
extra_batch_dims=extra_batch_dims,
dtype=dtype)
def combine_masks(*masks: Optional[Array], dtype: DType = jnp.float32):
"""Combine attention masks.
Args:
*masks: set of attention mask arguments to combine, some can be None.
dtype: final mask dtype
Returns:
Combined mask, reduced by logical and, returns None if no masks given.
"""
masks = [m for m in masks if m is not None]
if not masks:
return None
assert all(map(lambda x: x.ndim == masks[0].ndim, masks)), (
f'masks must have same rank: {tuple(map(lambda x: x.ndim, masks))}')
mask, *other_masks = masks
for other_mask in other_masks:
mask = jnp.logical_and(mask, other_mask)
return mask.astype(dtype)
def combine_biases(*masks: Optional[Array]):
"""Combine attention biases.
Args:
*masks: set of attention bias arguments to combine, some can be None.
Returns:
Combined mask, reduced by summation, returns None if no masks given.
"""
masks = [m for m in masks if m is not None]
if not masks:
return None
assert all(map(lambda x: x.ndim == masks[0].ndim, masks)), (
f'masks must have same rank: {tuple(map(lambda x: x.ndim, masks))}')
mask, *other_masks = masks
for other_mask in other_masks:
mask = mask + other_mask
return mask
def make_decoder_mask(decoder_target_tokens: Array,
dtype: DType,
decoder_causal_attention: Optional[Array] = None,
decoder_segment_ids: Optional[Array] = None) -> Array:
"""Compute the self-attention mask for a decoder.
Decoder mask is formed by combining a causal mask, a padding mask and an
optional packing mask. If decoder_causal_attention is passed, it makes the
masking non-causal for positions that have value of 1.
A prefix LM is applied to a dataset which has a notion of "inputs" and
"targets", e.g., a machine translation task. The inputs and targets are
concatenated to form a new target. `decoder_target_tokens` is the concatenated
decoder output tokens.
The "inputs" portion of the concatenated sequence can attend to other "inputs"
tokens even for those at a later time steps. In order to control this
behavior, `decoder_causal_attention` is necessary. This is a binary mask with
a value of 1 indicating that the position belonged to "inputs" portion of the
original dataset.
Example:
Suppose we have a dataset with two examples.
ds = [{"inputs": [6, 7], "targets": [8]},
{"inputs": [3, 4], "targets": [5]}]
After the data preprocessing with packing, the two examples are packed into
one example with the following three fields (some fields are skipped for
simplicity).
decoder_target_tokens = [[6, 7, 8, 3, 4, 5, 0]]
decoder_segment_ids = [[1, 1, 1, 2, 2, 2, 0]]
decoder_causal_attention = [[1, 1, 0, 1, 1, 0, 0]]
where each array has [batch, length] shape with batch size being 1. Then,
this function computes the following mask.
mask = [[[[1, 1, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]]]]
mask[b, 1, :, :] represents the mask for the example `b` in the batch.
Because mask is for a self-attention layer, the mask's shape is a square of
shape [query length, key length].
mask[b, 1, i, j] = 1 means that the query token at position i can attend to
the key token at position j.
Args:
decoder_target_tokens: decoder output tokens. [batch, length]
dtype: dtype of the output mask.
decoder_causal_attention: a binary mask indicating which position should
only attend to earlier positions in the sequence. Others will attend
bidirectionally. [batch, length]
decoder_segment_ids: decoder segmentation info for packed examples. [batch,
length]
Returns:
the combined decoder mask.
"""
masks = []
# The same mask is applied to all attention heads. So the head dimension is 1,
# i.e., the mask will be broadcast along the heads dim.
# [batch, 1, length, length]
causal_mask = make_causal_mask(decoder_target_tokens, dtype=dtype)
# Positions with value 1 in `decoder_causal_attneition` can attend
# bidirectionally.
if decoder_causal_attention is not None:
# [batch, 1, length, length]
inputs_mask = make_attention_mask(
decoder_causal_attention,
decoder_causal_attention,
jnp.logical_and,
dtype=dtype)
masks.append(jnp.logical_or(causal_mask, inputs_mask).astype(dtype))
else:
masks.append(causal_mask)
# Padding mask.
masks.append(
make_attention_mask(
decoder_target_tokens > 0, decoder_target_tokens > 0, dtype=dtype))
# Packing mask
if decoder_segment_ids is not None:
masks.append(
make_attention_mask(
decoder_segment_ids, decoder_segment_ids, jnp.equal, dtype=dtype))
return combine_masks(*masks, dtype=dtype)
|