Spaces:
Build error
Build error
File size: 26,341 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""T5X Optimizer Support.
Tools for wrapping Optax optimizers and handling SPMD annotations for use with
pjit.
Additional support for the legacy Adafactor implementation.
"""
import functools
from typing import Any, Optional, Union, Sequence, Tuple
import flax
from flax import optim # just used for transitional type definitions
from flax import serialization
from flax import struct
from flax import traverse_util
from flax.core import frozen_dict
from flax.serialization import from_state_dict
from flax.serialization import to_state_dict
import jax
import jax.numpy as jnp
import optax
freeze = flax.core.frozen_dict.freeze
unfreeze = flax.core.frozen_dict.unfreeze
Dtype = Any
@struct.dataclass
class OptimizerState:
step: jnp.ndarray
param_states: Any
class OptimizerDef:
"""Base class for an optimizer definition."""
def __init__(self, hyper_params):
self.hyper_params = hyper_params
def apply_gradient(self, hyper_params, params, state, grads):
"""Applies a gradient for a set of parameters."""
raise NotImplementedError()
def init_state(self, params):
raise NotImplementedError()
def update_hyper_params(self, **hyper_param_overrides):
"""Updates the hyper parameters with a set of overrides.
Args:
**hyper_param_overrides: the hyper parameters updates will override the
defaults specified in the `OptimizerDef`. Pass `hyper_params=...` to
replace all hyper parameters.
Returns:
The new hyper parameters.
"""
hp = hyper_param_overrides.pop('hyper_params', self.hyper_params)
if hyper_param_overrides:
hp = hp.replace(**hyper_param_overrides)
return hp
def create(self, target):
"""Creates a new optimizer for the given target.
Args:
target: the object to be optimized. This is typically a variable dict
returned by `flax.linen.Module.init()`, but it can also be a container
of variables dicts, e.g. `(v1, v2)` and `('var1': v1, 'var2': v2)` are
valid inputs as well.
Returns:
An instance of `Optimizer`.
"""
opt_def = self
state = opt_def.init_state(target)
return Optimizer(opt_def, state, target)
def state_dict(self, target, state):
return to_state_dict({
'target': to_state_dict(target),
'state': to_state_dict(state)
})
def restore_state(self, opt_target, opt_state, state_dict):
"""Restore the optimizer target and state from the state dict.
Args:
opt_target: the optimizer target.
opt_state: the optimizer state.
state_dict: the state dict containing the desired new state of the
optimizer.
Returns:
a tuple of the optimizer target and state with the restored values from
the state dict.
"""
opt_target = from_state_dict(opt_target, state_dict['target'])
opt_state = from_state_dict(opt_state, state_dict['state'])
return opt_target, opt_state
class Optimizer(struct.PyTreeNode):
"""Legacy flax optimizer class.
Optimizer carries the target and optimizer state. The optimizer is updated
using the method apply_gradient.
Attributes:
optimizer_def: The optimizer definition.
state: The initial state of the optimizer.
target: The target to optimizer.
"""
optimizer_def: OptimizerDef = struct.field(pytree_node=False)
state: Any = struct.field(pytree_node=True)
target: Any = struct.field(pytree_node=True)
def apply_gradient(self, grads, **hyper_param_overrides):
"""Applies a pytree of gradients to the target.
Args:
grads: A pytree of gradients.
**hyper_param_overrides: the hyper parameters passed to apply_gradient
will override the defaults specified in the `OptimizerDef`. Pass
`hyper_params=...` to replace all hyper parameters.
Returns:
A new optimizer with the updated target and state.
"""
hyper_params = self.optimizer_def.update_hyper_params(
**hyper_param_overrides)
new_target, new_state = self.optimizer_def.apply_gradient(
hyper_params, self.target, self.state, grads)
return self.replace(target=new_target, state=new_state)
def state_dict(self):
return self.optimizer_def.state_dict(self.target, self.state)
def restore_state(self, state):
target, state = self.optimizer_def.restore_state(self.target, self.state,
state)
return self.replace(target=target, state=state)
# Transitional Type Definitions
OptimizerType = Union[optim.Optimizer, Optimizer]
OptimizerStateType = Union[optim.OptimizerState, OptimizerState]
OptimizerDefType = Union[optim.OptimizerDef, OptimizerDef]
# Optax Elementwise Wrapper
class OptaxStatePartitionRules:
"""Collection of rules to partition optax states.
These rules work for optimizers whose states are simply replications of
params, e.g., Adam. Optimizers that aim to save memory by factoring states,
e.g., Adafactor, SM3, are not supported currently.
"""
# Rules mapping a particular optax state to a callable returning the state
# with arrays replaced by t5x PartitionSpec or None.
#
# NOTE(levskaya): This is not an entirely exhaustive list, add to this list
# to support additional optimizers / transformations.
#
# pylint: disable=g-long-lambda
_RULES = {
# Leaf Optax States:
optax.AddNoiseState:
lambda state, params_axes: optax.AddNoiseState(
count=None, rng_key=None),
optax.DifferentiallyPrivateAggregateState:
lambda state, params_axes: optax.DifferentiallyPrivateAggregateState(
rng_key=None),
optax.EmaState:
lambda state, params_axes: optax.EmaState(
count=None, ema=params_axes),
optax.EmptyState:
lambda state, params_axes: optax.EmptyState(),
optax.TraceState:
lambda state, params_axes: optax.TraceState(trace=params_axes),
optax.ScaleByAdamState:
lambda state, params_axes: optax.ScaleByAdamState(
count=None, mu=params_axes, nu=params_axes),
optax.ScaleByBeliefState:
lambda state, params_axes: optax.ScaleByBeliefState(
count=None, mu=params_axes, nu=params_axes),
optax.ScaleByRssState:
lambda state, params_axes: optax.ScaleByRssState(
sum_of_squares=params_axes),
optax.ScaleByRmsState:
lambda state, params_axes: optax.ScaleByRmsState(nu=params_axes),
optax.ScaleByRStdDevState:
lambda state, params_axes: optax.ScaleByRStdDevState(
mu=params_axes, nu=params_axes),
optax.ScaleBySM3State:
lambda state, params_axes: optax.ScaleBySM3State(
mu=params_axes, nu=params_axes),
optax.ScaleByTrustRatioState:
lambda state, params_axes: optax.ScaleByTrustRatioState(),
optax.ScaleByScheduleState:
lambda state, params_axes: optax.ScaleByScheduleState(count=None),
optax.ScaleByFromageState:
lambda state, params_axes: optax.ScaleByFromageState(count=None),
optax.ZeroNansState:
lambda state, params_axes: optax.ZeroNansState(found_nan=None),
# FactoredState
# Recursive, Combinator Optax States:
# MaskedState
optax.MaskedState:
lambda state, params_axes: optax.MaskedState(
inner_state=OptaxStatePartitionRules.derive_optax_logical_axes(
state.inner_state, params_axes)),
optax.InjectHyperparamsState:
lambda state, params_axes: optax.InjectHyperparamsState(
count=None,
hyperparams=jax.tree_map(lambda x: None, state.hyperparams),
inner_state=OptaxStatePartitionRules.derive_optax_logical_axes(
state.inner_state, params_axes)),
optax.MultiStepsState:
lambda state, params_axes: optax.MultiStepsState(
mini_step=None,
gradient_step=None,
inner_opt_state=OptaxStatePartitionRules.
derive_optax_logical_axes( # pylint: disable=line-too-long
state.inner_opt_state, params_axes),
acc_grads=params_axes),
optax.ApplyIfFiniteState:
lambda state, params_axes: optax.ApplyIfFiniteState(
notfinite_count=None,
last_finite=None,
total_notfinite=None,
inner_state=OptaxStatePartitionRules.derive_optax_logical_axes(
state.inner_state, params_axes)),
optax.MaybeUpdateState:
lambda state, params_axes: optax.MaybeUpdateState(
inner_state=OptaxStatePartitionRules.derive_optax_logical_axes(
state.inner_state, params_axes),
step=None),
optax.MultiTransformState:
lambda state, params_axes: optax.MultiTransformState(
inner_states=OptaxStatePartitionRules.derive_optax_logical_axes(
state.inner_states, params_axes)),
# LookaheadState
# SplitRealAndImaginaryState
}
# pylint: enable=g-long-lambda
@classmethod
def _is_optax_state(cls, x):
"""Returns true if an object is an optax state.
Note that in optax states are simply derived from NamedTuple, so we have to
do some hacky name matching.
Args:
x: object.
Returns:
True if x is an optax state.
"""
# A solution from stack overflow. Note that isinstance(x, NamedTuple) would
# not work.
is_named_tuple = (
isinstance(x, tuple) and hasattr(x, '_asdict') and
hasattr(x, '_fields'))
result = is_named_tuple and type(x).__name__.endswith('State')
return result
@classmethod
def derive_optax_logical_axes(cls, optax_state, params_axes):
"""Derived logical axes for optax state."""
# Flatten the optax state but do not go into the registered states.
flattened_state, tree_def = jax.tree_flatten(
optax_state, is_leaf=cls._is_optax_state)
def derive_fn(x):
if type(x) not in cls._RULES:
if cls._is_optax_state(x):
raise ValueError(
f'Encountered unregistered optax state type {type(x).__name__}')
return None
return cls._RULES[type(x)](x, params_axes)
flattened_axes = [derive_fn(x) for x in flattened_state]
derived_axes = jax.tree_unflatten(tree_def, flattened_axes)
return derived_axes
@struct.dataclass
class _OptaxWrapperHyperParams:
"""Dummy hyper params struct, not used."""
# Required by t5x trainer. Unused as learning rate scheduling is done using
# optax.Schedule.
learning_rate: Optional[float] = None
class OptaxWrapper(OptimizerDef):
"""Wrapper to make optax optimizer compatible with T5X."""
def __init__(self, optax_optimizer: optax.GradientTransformation):
"""Initializer.
Args:
optax_optimizer: An optax optimizer.
"""
self.optax_optimizer = optax_optimizer
super().__init__(hyper_params=_OptaxWrapperHyperParams())
def init_state(self, params):
"""Create initial state based on the params to optimize.
Args:
params: PyTree of parameters to optimize.
Returns:
Initial optimizer state.
"""
state = OptimizerState(
step=0, param_states=self.optax_optimizer.init(params))
return state
def apply_gradient(self, hyper_params, params, state, grads):
"""Applies gradient.
Args:
hyper_params: Unused hyper parameters.
params: PyTree of the parameters.
state: A named tuple containing the state of the optimizer.
grads: PyTree of the gradients for the parameters.
Returns:
A tuple containing the new parameters and the new optimizer state.
"""
del hyper_params
updates, new_optax_state = self.optax_optimizer.update(
grads, state.param_states, params)
new_params = optax.apply_updates(params, updates)
return new_params, OptimizerState(
step=state.step + 1, param_states=new_optax_state)
def derive_logical_axes(self, optimizer, param_logical_axes):
"""Derives optimizer state logical axes from params logical axes.
Args:
optimizer: `optimizers.Optimizer` instance.
param_logical_axes: A PyTree where each leaf is a t5x PartitionSpec.
Returns:
An `optimizers.Optimizer` instance, with all the leafs replaced by t5x
PartitionSpec or None (no partition).
"""
optimizer_logical_axes = jax.tree_map(lambda x: None,
optimizer.state_dict())
optimizer_logical_axes['target'] = param_logical_axes
optax_state_axes = OptaxStatePartitionRules.derive_optax_logical_axes(
optimizer.state.param_states, param_logical_axes)
optimizer_logical_axes['state']['param_states'] = (
serialization.to_state_dict(optax_state_axes))
return optimizer.restore_state(frozen_dict.unfreeze(optimizer_logical_axes))
def state_dict(self, target, state):
"""Override state dict function.
We need to override this function because many optax transformations use
`optax.EmptyState`, which produces empty dict in the state dict. This causes
the T5 training loop to fail in multiple places. As a remedy, we will
filter out the generated state dict so that there are no empty dict in the
output.
The restore_state function is also overridden to reconstruct those empty
dict.
Args:
target: Pytree of target variables.
state: Pytree of optimizer state.
Returns:
A nested state.
"""
state_dict = to_state_dict(state)
# This step removes any empty dict (recursively) in the state dict.
state_dict = traverse_util.unflatten_dict(
traverse_util.flatten_dict(state_dict, sep='/'), sep='/')
return to_state_dict({
'target': to_state_dict(target),
'state': state_dict,
})
def restore_state(self, opt_target, opt_state, state_dict):
"""Override to restore empty dicts corresponding to `optax.EmptyState`.
Args:
opt_target: the optimizer target.
opt_state: the optimizer state.
state_dict: the state dict containing the desired new state of the
optimizer.
Returns:
a tuple of the optimizer target and state with the restored values from
the state dict.
"""
opt_target = from_state_dict(opt_target, state_dict['target'])
# Get all the possible keys in the reference optimizer state.
flat_ref_opt_state_dict = traverse_util.flatten_dict(
to_state_dict(opt_state), keep_empty_nodes=True, sep='/')
flat_src_opt_state_dict = dict(
traverse_util.flatten_dict(state_dict['state'], sep='/'))
# Adding the empty paths back to flat_src_opt_state_dict.
for k, v in flat_ref_opt_state_dict.items():
if k in flat_src_opt_state_dict:
continue
# The key is not in the input state dict, presumably because it
# corresponds to an empty dict.
if v != traverse_util.empty_node:
raise ValueError(
f'Failed to restore optimizer state, path {k} is not present '
'in the input optimizer state dict.')
flat_src_opt_state_dict[k] = v
# Restore state from the enhanced state dict.
opt_state = from_state_dict(
opt_state,
traverse_util.unflatten_dict(flat_src_opt_state_dict, sep='/'))
return opt_target, opt_state
# Optax wrapper and elementary wrapped optax optimizers.
def wrap_optax_optimizer(optax_optimizer):
"""Converts optax optimizer constructor to a wrapped T5X-compatible optimizer.
Args:
optax_optimizer: an optax optimizer creation function that returns an optax
GradientTransformation.
Returns:
A function that takes the same arguments as the original optax creation
function but instead returns a wrapped OptimizerDef-compatible interface for
using the optimizer with T5X.
"""
@functools.wraps(optax_optimizer)
def wrapped_optimizer(*args, **kwargs) -> OptimizerDef:
return OptaxWrapper(optax_optimizer(*args, **kwargs))
return wrapped_optimizer
def chain(
transformations: Sequence[optax.GradientTransformation]
) -> optax.GradientTransformation:
return optax.chain(*transformations)
chain = wrap_optax_optimizer(chain)
adabelief = wrap_optax_optimizer(optax.adabelief)
adagrad = wrap_optax_optimizer(optax.adagrad)
adam = wrap_optax_optimizer(optax.adam)
adamw = wrap_optax_optimizer(optax.adamw)
fromage = wrap_optax_optimizer(optax.fromage)
lars = wrap_optax_optimizer(optax.lars)
lamb = wrap_optax_optimizer(optax.lamb)
noisy_sgd = wrap_optax_optimizer(optax.noisy_sgd)
radam = wrap_optax_optimizer(optax.radam)
rmsprop = wrap_optax_optimizer(optax.rmsprop)
sgd = wrap_optax_optimizer(optax.sgd)
yogi = wrap_optax_optimizer(optax.yogi)
dpsgd = wrap_optax_optimizer(optax.dpsgd)
# Excluded optimizers:
# TODO(levskaya): add shampoo, sm3
# We use our own generalized adafactor implementations.
# adafactor = wrap_optax_optimizer(optax.adafactor)
# We may use a more complete quantized implementation of SM3
# sm3 = wrap_optax_optimizer(optax.sm3)
# Inlined Legacy Generalized Multioptimizer
class _Marker:
"""Used to mark unoptimized leaves."""
def __init__(self):
self._indices = []
def _tree_of_paths(tree):
"""Converts a (frozen) nested dictionary into a (frozen) dict of paths."""
is_frozen = isinstance(tree, flax.core.frozen_dict.FrozenDict)
flat_tree = traverse_util.flatten_dict(unfreeze(tree))
path_tree = traverse_util.unflatten_dict(
{k: '/'.join(k) for k in flat_tree.keys()})
if is_frozen:
path_tree = freeze(path_tree)
return path_tree
def _subtree_from_traversal(traversal, tree):
"""Creates a (frozen) tree subset given a traversal."""
is_frozen = isinstance(tree, flax.core.frozen_dict.FrozenDict)
flat_tree = {}
for path, leaf in zip(
traversal.iterate(_tree_of_paths(tree)), traversal.iterate(tree)):
flat_tree[path] = leaf
new_tree = traverse_util.unflatten_dict(
{tuple(k.split('/')): v for k, v in flat_tree.items()})
if is_frozen:
new_tree = freeze(new_tree)
return new_tree
def _update_subtree_of_traversal(traversal, tree, update):
"""Updates a (frozen) tree's subset given a traversal and update subtree."""
is_frozen = isinstance(tree, flax.core.frozen_dict.FrozenDict)
flat_tree = traverse_util.flatten_dict(unfreeze(tree))
flat_tree = {'/'.join(k): v for k, v in flat_tree.items()}
for path, leaf in zip(
traversal.iterate(_tree_of_paths(update)), traversal.iterate(update)):
flat_tree[path] = leaf
nested_d = traverse_util.unflatten_dict(
{tuple(k.split('/')): v for k, v in flat_tree.items()})
if is_frozen:
nested_d = freeze(nested_d)
return nested_d
class MultiOptimizer(OptimizerDef):
"""Generalized Multioptimizer.
NB: Although this is provided for legacy support, it is still quite general
and should work fine with wrapped optax optimizers. But do note that the more
canonical way of mixing multiple optimizers inside optax uses optax.masked or
optax.multi_transform instead.
A MultiOptimizer is subclass of :class:`OptimizerDef` and useful for applying
separate optimizer algorithms to various subsets of the model parameters.
The example below creates two optimizers using
:class:`flax.traverse_util.ModelParamTraversal`:
one to optimize ``kernel`` parameters and to optimize ``bias`` parameters.
Note each optimizer is created with a different learning rate::
kernels = traverse_util.ModelParamTraversal(
lambda path, _: 'kernel' in path)
biases = traverse_util.ModelParamTraversal(lambda path, _: 'bias' in path)
kernel_opt = optimizers.adam(learning_rate=0.01)
bias_opt = optimizers.adam(learning_rate=0.1)
opt_def = MultiOptimizer((kernels, kernel_opt), (biases, bias_opt))
optimizer = opt_def.create(model)
In order to train only a subset of the parameters, you can simply use a single
:class:`flax.traverse_util.ModelParamTraversal` instance.
If you want to update the learning rates of both optimizers online with
different learning rate schedules, you should update the learning rates when
applying the gradient. In the following example, the second optimizer is not
doing any optimization during the first 1000 steps::
hparams = optimizer.optimizer_def.hyper_params
new_optimizer = optimizer.apply_gradient(
grads,
hyper_params=[
hparams[0].replace(learning_rate=0.2),
hparams[1].replace(learning_rate=jnp.where(step < 1000, 0., lr)),
])
"""
def __init__(
self, traversals_and_optimizers: Sequence[Tuple[traverse_util.Traversal,
OptimizerDef]]):
"""Create a new MultiOptimizer.
See docstring of :class:`MultiOptimizer` for more details.
Args:
traversals_and_optimizers: pairs of flax.traverse_util.Traversal and
`optimizers.OptimizerDef` instances.
"""
traversals, sub_optimizers = zip(*traversals_and_optimizers)
hyper_params = [opt.hyper_params for opt in sub_optimizers]
super().__init__(hyper_params)
self.traversals = traversals
self.sub_optimizers = sub_optimizers
def init_state(self, params):
param_states = jax.tree_map(lambda x: _Marker(), params)
overlap = False
for idx, traversal in enumerate(self.traversals):
for match in traversal.iterate(param_states):
match._indices.append(idx) # pylint: disable=protected-access
overlap |= len(match._indices) > 1 # pylint: disable=protected-access
if overlap:
raise ValueError(
'Multiple optimizers match the same leaves : ' +
str(jax.tree_map(lambda match: match._indices, param_states))) # pylint: disable=protected-access
param_states = jax.tree_map(lambda x: _Marker(), params)
for focus, opt_def in zip(self.traversals, self.sub_optimizers):
ps = _subtree_from_traversal(focus, params)
ss = opt_def.init_state(ps)
param_states = _update_subtree_of_traversal(focus, param_states,
ss.param_states)
# Update state to None when param is not optimized by any sub optimizer.
param_states = jax.tree_map(
lambda x: (None if isinstance(x, _Marker) else x), param_states)
return OptimizerState(jnp.asarray(0, dtype=jnp.int32), param_states)
def apply_gradient(self, hyper_params, params, state, grads):
new_params = params
it = zip(self.traversals, self.sub_optimizers, hyper_params)
new_param_states = jax.tree_map(lambda x: _Marker(), params)
for focus, opt_def, hp in it:
ps = _subtree_from_traversal(focus, params)
gs = _subtree_from_traversal(focus, grads)
ss = _subtree_from_traversal(focus, state.param_states)
prev_ss = OptimizerState(state.step, ss)
new_ps, new_ss = opt_def.apply_gradient(hp, ps, prev_ss, gs)
new_params = _update_subtree_of_traversal(focus, new_params, new_ps)
new_param_states = _update_subtree_of_traversal(focus, new_param_states,
new_ss.param_states)
# Update state to None when param is not optimized by any sub optimizer.
new_param_states = jax.tree_map(
lambda x: (None if isinstance(x, _Marker) else x), new_param_states)
return new_params, OptimizerState(state.step + 1, new_param_states)
def update_hyper_params(self, **hyper_param_overrides):
"""Updates the hyper parameters with a set of overrides.
This method is called from :meth:`Optimizer.apply_gradient` to create the
hyper parameters for a specific optimization step.
MultiOptimizer will apply the overrides for each sub optimizer.
Args:
**hyper_param_overrides: the hyper parameters updates will override the
defaults specified in the `OptimizerDef`. Pass `hyper_params=...` to
replace all hyper parameters.
Returns:
The new hyper parameters.
"""
hps = hyper_param_overrides.pop('hyper_params', self.hyper_params)
if hyper_param_overrides:
hps = [hp.replace(**hyper_param_overrides) for hp in hps]
return hps
def set_param_axes(self, param_logical_axes):
"""Derives factorization rules from model parameter logical axes."""
for focus, opt_def in zip(self.traversals, self.sub_optimizers):
pla_subtree = _subtree_from_traversal(focus, param_logical_axes)
if hasattr(opt_def, 'set_param_axes'):
opt_def.set_param_axes(pla_subtree)
def derive_logical_axes(self, optimizer, param_logical_axes):
"""Derives optimizer logical partitioning from model logical partitions."""
param_states = jax.tree_map(lambda x: _Marker(),
optimizer.state.param_states)
for focus, opt_def in zip(self.traversals, self.sub_optimizers):
if hasattr(opt_def, 'derive_logical_axes'):
ps = _subtree_from_traversal(focus, param_logical_axes)
ss = _subtree_from_traversal(focus, optimizer.state.param_states)
new_opt = opt_def.derive_logical_axes(
Optimizer(opt_def, OptimizerState(None, ss), ps), ps)
param_states = _update_subtree_of_traversal(focus, param_states,
new_opt.state.param_states)
# Update axes to None when param is not optimized by any sub optimizer.
param_states = jax.tree_map(
lambda x: (None if isinstance(x, _Marker) else x), param_states)
return Optimizer(optimizer.optimizer_def,
OptimizerState(None, param_states), param_logical_axes)
# TODO(levskaya): add traversal handling for state_dict / restore_state
# this is required to make this work w. optax optimizers...
|