Spaces:
Build error
Build error
File size: 17,801 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""T5 Checkpoint Importer."""
import asyncio
from concurrent.futures import thread
import re
from typing import Any, Callable, Mapping, MutableMapping, Optional, Union
from flax import traverse_util
import jax
from jax import numpy as jnp
import numpy as np
import orbax.checkpoint
import tensorflow as tf
import tensorstore as ts
# TODO(b/233659813): Cleanup clients depending on t5x.checkpoint_importer for
# LazyArray. Reconcile divergence in subclass implementation when possible.
LazyArray = orbax.checkpoint.lazy_array.LazyArray
# TODO(brianlester): The choice between using a `LazyTreadPoolArray` or a
# `LazyAwaitableArray` is dependent on if the user provided `get_fn` is blocking
# or async respectively, if we can detect which it is, we can automatically
# proxy to the correct subclass. We cannot detect of `get_fn` is a lambda that
# wraps an async call so this isn't possible yet. Add this dispatch once we are
# able to detect that, python3.8+ can detect async for partial'ed functions but
# not lambdas.
class LazyThreadPoolArray(LazyArray):
"""Lazily and asynchronously loads an array when the `get_fn` blocks."""
# Uses a global threadpool to enable asynchronous loading.
executor = thread.ThreadPoolExecutor()
def get_async(self) -> asyncio.Future:
return asyncio.wrap_future(self.executor.submit(self.get))
def get(self) -> np.ndarray:
arr = self._get_fn()
if arr.dtype != self.dtype:
arr = arr.astype(self.dtype)
return arr
class LazyAwaitableArray(LazyArray):
"""Lazily and asynchronously loads an array when the `get_fn` is async.
Note:
The synchronous load method `.get` requires the asyncio event loop and
calling `.run_until_complete`. This is not supported when the event loop is
already running (for example, from inside another async function).
Note:
Currently, this class has a few helper methods for creating a
LazyAwaitableArray when the input could be either an array, or a TensorStore
spec. Most people use async code when dealing with TensorStore so the
classmethods have been placed here. When someone eventually uses a blocking
function to read from TensorStore they can be moved to the LazyArray base
class.
"""
def get_async(self) -> asyncio.Future:
async def _get_and_cast():
# Pytype has a false positive here, where it treats our _get_fn (_read_ts
# in this case) as having a return type of `np.ndarray` instead of
# wrapping it in an Awaitable. Related to this bug
# https://github.com/google/pytype/issues/527
arr = await self._get_fn() # pytype: disable=bad-return-type
if arr.dtype != self.dtype:
arr = arr.astype(self.dtype)
return arr
return asyncio.ensure_future(_get_and_cast())
def get(self) -> np.ndarray:
loop = asyncio.get_event_loop()
return loop.run_until_complete(self.get_async())
@classmethod
def from_tensor_store_spec(
cls,
ts_spec: ts.Spec,
get_fn: Callable[[], np.ndarray],
dtype: Optional[jnp.dtype] = None) -> 'LazyAwaitableArray':
"""Create a LazyAwaitableArray based on a tensorstore.Spec."""
ts_spec = ts_spec.to_json()
shape = ts_spec['metadata']['shape']
if dtype is None:
dtype = jnp.dtype(ts_spec['dtype'])
else:
dtype = jnp.dtype(dtype)
# v2 T5X checkpoints use uint16 as the TensorStore datatype and then store
# the bfloat16 bytes as in in the 16 bytes uint16 has (no actual cast). When
# When reading the dtype from the TensorStore, if we keep the dtype of these
# v2 checkpoints as np.uint16 then the _get_fn (which has a possible cast to
# support the `restore_dtype` parameter for the checkpointer) will actually
# cast the bfloat16 values to uint16, generally resulting in an array of all
# zeros. This check avoid the actual cast to uint16 by replacing the dtype.
if dtype == np.uint16:
dtype = jnp.bfloat16
return cls(shape, dtype, get_fn)
@classmethod
def from_array(cls,
array: np.ndarray,
get_fn: Callable[[], np.ndarray],
dtype: Optional[jnp.dtype] = None) -> 'LazyAwaitableArray':
"""Create a LazyAwaitableArray based on an array or python number."""
if dtype is None:
dtype = array.dtype
else:
dtype = jnp.dtype(dtype)
return cls(array.shape, dtype, get_fn)
@classmethod
def from_tensor_store_spec_or_array(
cls,
maybe_ts_spec: Union[ts.Spec, np.ndarray],
get_fn: Callable[[], np.ndarray],
dtype: Optional[jnp.dtype] = None) -> 'LazyAwaitableArray':
"""Create a LazyAwaitableArray based on an array or a tensorstore.Spec."""
if isinstance(maybe_ts_spec, ts.Spec):
return cls.from_tensor_store_spec(maybe_ts_spec, get_fn, dtype=dtype)
return cls.from_array(maybe_ts_spec, get_fn, dtype=dtype)
class CheckpointTranslator:
"""Utility class for defining mapping rules from one flatdict to another.
We assume a checkpoint is loaded as a dictionary with flattened keys of the
form: 'name0/name1/name2/.../nameN'
A rule is added with the 'add' decorator, which takes a regex matching rule
and wraps a conversion function, feeding it (opts, key, val, **regex_groups)
where opts is a dict containing apply-time keyword options for use by the
conversion functions.
"""
def __init__(self):
self.rules = []
def add(self, pattern):
"""Adds a new keyval conversion rule.
Args:
pattern: regex with capture groups for matching given sets of model
variables. We terminate all regexes with '$' to force complete matches.
Returns:
Translation function decorator for associating with the provided
pattern.
"""
def register_translation_fn_decorator(fn):
# We force a complete match by adding end-of-string match.
self.rules.append((re.compile(pattern + '$'), fn))
return fn
return register_translation_fn_decorator
def apply(self, flatdict, **opts):
"""Applies rules to a flattened dictionary.
Args:
flatdict: flat-key dictionary of variables.
**opts: additional config options for translation rules supplied at
application time.
Returns:
Checkpoint data with translated key/values in flat-key dict format.
"""
new_dict = {}
unmatched = {}
for k, v in flatdict.items():
matched = False
for rule_pat, rule_fn in self.rules:
if rule_pat.match(k):
groups = rule_pat.match(k).groups()
new_k, new_v = rule_fn(opts, k, v, *groups)
if new_k is not None:
new_dict[new_k] = new_v
matched = True
break
if not matched:
unmatched[k] = v
# We force every key-value pair in checkpoint to have a rule associated with
# it.
if unmatched:
raise ValueError('Unmapped tensor keys exist: %s' % unmatched)
return new_dict
# Create a translation rule set for importing T5 & T5.1.1 model checkpoints.
# -----------------------------------------------------------------------------
t5_importer = CheckpointTranslator()
# Name mappings.
SLOT_MAP = {'_slot_vc': 'v_col', '_slot_vr': 'v_row', '_slot_v': 'v'}
TOWER_MAP = {'transformer': 'decoder'}
@t5_importer.add(r'global_step')
def global_step(opts, key, val):
del opts, key
return 'state/step', val.astype(np.int32).get() if isinstance(
val, LazyArray) else val
@t5_importer.add(r'shared/embedding(\w*)')
def shared_embeddings(opts, key, val, slot):
del opts, key
prefix = 'state/param_states' if slot else 'target'
suffix = '/' + SLOT_MAP[slot] if slot else ''
newkey = f'{prefix}/token_embedder/embedding{suffix}'
return newkey, val
@t5_importer.add(r'(encoder|decoder|transformer)/embedding(\w*)')
def separate_embeddings(opts, key, val, encdec, slot):
del opts, key
prefix = 'state/param_states' if slot else 'target'
suffix = '/' + SLOT_MAP[slot] if slot else ''
encdec = TOWER_MAP.get(encdec, encdec)
newkey = f'{prefix}/{encdec}/token_embedder/embedding{suffix}'
return newkey, val
# In the Mesh TensorFlow T5 code, relative_attention_bias always occurs in layer
# 0 because SelfAttention precedes other sublayers within the same block.
@t5_importer.add(
r'(encoder|decoder|transformer)/block_(\d+)/layer_000/SelfAttention/relative_attention_bias(\w*)'
)
def rel_embeddings(opts, key, val, encdec, blocknum, slot):
"""Process relpos bias assuming that they are not shared across layers."""
del opts, key
prefix = 'state/param_states' if slot else 'target'
suffix = '/' + SLOT_MAP[slot] if slot else ''
blocknum = int(blocknum)
encdec = TOWER_MAP.get(encdec, encdec)
# At this point, we can't determine whether the relpos bias was shared across
# layers or not. We first assume that it was not shared. During post
# processing, we remove the layers_0 scope if it was shared.
newkey = f'{prefix}/{encdec}/layers_{blocknum}/relpos_bias/rel_embedding{suffix}'
return newkey, val
@t5_importer.add(
r'(encoder|decoder|transformer)/block_(\d+)/layer_\d+/(SelfAttention|EncDecAttention)/(q|k|v|o)(\w*)'
)
def attention_layers(opts, key, val, encdec, blocknum, attntype, qkvo, slot):
"""Process attention layers."""
del opts, key
prefix = 'state/param_states' if slot else 'target'
suffix = '/' + SLOT_MAP[slot] if slot else ''
blocknum = int(blocknum)
encdec = TOWER_MAP.get(encdec, encdec)
matrix = {'q': 'query', 'k': 'key', 'v': 'value', 'o': 'out'}[qkvo]
if encdec == 'encoder':
attntype = 'attention'
else:
attntype = {
'SelfAttention': 'self_attention',
'EncDecAttention': 'encoder_decoder_attention'
}[attntype]
newkey = f'{prefix}/{encdec}/layers_{blocknum}/{attntype}/{matrix}/kernel{suffix}'
return newkey, val
@t5_importer.add(
r'(encoder|decoder|transformer)/block_(\d+)/layer_\d+/DenseReluDense/(wi|wo)(?:_(\d+))?/kernel(\w*)'
)
def mlpblock(opts, key, val, encdec, blocknum, io_name, io_num, slot):
"""Process MLP blocks."""
del opts, key
prefix = 'state/param_states' if slot else 'target'
suffix = '/' + SLOT_MAP[slot] if slot else ''
blocknum = int(blocknum)
encdec = TOWER_MAP.get(encdec, encdec)
io_num = f'_{io_num}' if io_num else ''
newkey = f'{prefix}/{encdec}/layers_{blocknum}/mlp/{io_name}{io_num}/kernel{suffix}'
return newkey, val
@t5_importer.add(
r'(encoder|decoder|transformer)/block_(\d+)/layer_(\d+)/(?:layer|rms)_norm/scale(\w*)'
)
def layernorms(opts, key, val, encdec, blocknum, lyrnum, slot):
"""Process layer norms assuming that they are pre-layernorms."""
del opts, key
prefix = 'state/param_states' if slot else 'target'
suffix = '/' + SLOT_MAP[slot] if slot else ''
lyrnum = int(lyrnum)
if encdec == 'transformer':
layernorm_type = ['pre_self_attention_layer_norm',
'pre_mlp_layer_norm'][lyrnum]
elif encdec == 'encoder':
layernorm_type = ['pre_attention_layer_norm', 'pre_mlp_layer_norm'][lyrnum]
else: # decoder
layernorm_type = [
'pre_self_attention_layer_norm', 'pre_cross_attention_layer_norm',
'pre_mlp_layer_norm'
][lyrnum]
encdec = TOWER_MAP.get(encdec, encdec)
newkey = f'{prefix}/{encdec}/layers_{int(blocknum)}/{layernorm_type}/scale{suffix}'
return newkey, val
@t5_importer.add(
r'(encoder|decoder|transformer)/(?:final_layer|rms)_norm/scale(\w*)')
def final_layernorms(opts, key, val, encdec, slot):
"""Process final layer norms."""
del opts, key
prefix = 'state/param_states' if slot else 'target'
suffix = '/' + SLOT_MAP[slot] if slot else ''
norm = {
'encoder': 'encoder_norm',
'decoder': 'decoder_norm',
'transformer': 'decoder_norm'
}[encdec]
encdec = TOWER_MAP.get(encdec, encdec)
newkey = f'{prefix}/{encdec}/{norm}/scale{suffix}'
return newkey, val
@t5_importer.add(r'(?:decoder|transformer)/logits/kernel(\w*)')
def final_logits(opts, key, val, slot):
del opts, key
prefix = 'state/param_states' if slot else 'target'
suffix = '/' + SLOT_MAP[slot] if slot else ''
newkey = f'{prefix}/decoder/logits_dense/kernel{suffix}'
return newkey, val
def _add_missing_param_states(t5_data):
"""Add dummy slots that Flax Adafactor requires but TF does not."""
updates = {}
for k in t5_data:
if k.startswith('target'):
state_leaf = 'state/param_states' + k[len('target'):]
updates[state_leaf + '/m'] = np.zeros((1,), np.float32)
if state_leaf + '/v' in t5_data:
updates[state_leaf + '/v_row'] = np.zeros((1,), np.float32)
updates[state_leaf + '/v_col'] = np.zeros((1,), np.float32)
elif state_leaf + '/v_row' in t5_data:
updates[state_leaf + '/v'] = np.zeros((1,), np.float32)
t5_data.update(**updates)
return t5_data
def _maybe_correct_relpos_bias(t5_data):
"""Correct the relpos_bias format if it is shared across layers."""
max_layer_ind = 0
for k, v in t5_data.items():
match = re.search(r'layers_(\d+)/relpos_bias', k)
if match:
layer_ind = int(match.groups()[0])
max_layer_ind = max(max_layer_ind, layer_ind)
modified_dict = {}
if max_layer_ind == 0:
# Relative position biases are shared across layers
for k, v in t5_data.items():
new_k = re.sub(r'layers_\d+/relpos_bias', 'relpos_bias', k)
modified_dict[new_k] = v
else:
# Relative position biases are unique in each layer. No more processing is
# necessary.
modified_dict = t5_data
return modified_dict
# Load checkpoint, translate, and update flax optimizer and model.
# -----------------------------------------------------------------------------
def load_tf_ckpt(path):
"""Load a TF checkpoint as a flat dictionary of numpy arrays."""
ckpt_reader = tf.train.load_checkpoint(path)
ckpt_shape_map = ckpt_reader.get_variable_to_shape_map()
ckpt_dtype_map = ckpt_reader.get_variable_to_dtype_map()
datamap = { # pylint: disable=g-complex-comprehension
k: LazyThreadPoolArray(
s,
jnp.dtype(ckpt_dtype_map[k].as_numpy_dtype),
lambda x=k: ckpt_reader.get_tensor(x))
for k, s in ckpt_shape_map.items()
}
return datamap
def _update_state_dict(state_dict: Mapping[str, Any],
t5_data: MutableMapping[str, LazyArray],
strict: bool = True) -> Mapping[str, Any]:
"""Update flax optimizer for T5 model.
Args:
state_dict: Optimizer to update with T5 parameters.
t5_data: T5 model parameters, typically loaded from a checkpoint.
strict: If True requires that optimizer and t5_data mappings contain the
same set of names (variables). If False, updating will succeed even if
t5_data contains variables not in the optimizer. If the optimizer has
variables not in t5_data, this function will still fail.
Returns:
Updated optimizer.
"""
flat_state_dict = traverse_util.flatten_dict(state_dict, sep='/')
# Remove parameters from the checkpoint not found in the optimizer (this
# allows us to load checkpoints that contain more parameters than our current
# model).
if not strict:
for k in list(t5_data):
if k not in flat_state_dict:
t5_data.pop(k)
# Shape check.
for k, v in t5_data.items():
if flat_state_dict[k].shape != v.shape:
raise ValueError(
f'Variable {k} has shape {v.shape} != {flat_state_dict[k].shape}')
flat_state_dict = t5_data
state_dict = traverse_util.unflatten_dict(
{tuple(k.split('/')): v for k, v in flat_state_dict.items()})
return state_dict
def restore_from_t5_checkpoint(
state_dict: Mapping[str, Any],
path: str,
lazy_parameters: bool = False,
strict: bool = True,
translator: Optional[CheckpointTranslator] = None) -> Mapping[str, Any]:
"""Load T5 checkpoint and update Adafactor optimizer and T5 model from it.
We require that the final translated checkpoint structure exactly matches
that of the Flax Adafactor + Transformer data, up to shape agreement of
the leaves.
Args:
state_dict: Flax Adafactor Optimizer for T5 transformer encoder-decoder.
path: a path to checkpoint file or directory.
lazy_parameters: whether to leave the parameters as LazyArrays to preserve
memory.
strict: If True requires that optimizer and t5_data mappings contain the
same set of names (variables). If False, updating will succeed even if
t5_data contains variables not in the optimizer. If the optimizer has
variables not in t5_data, this function will still fail.
translator: The mapping rules for conversion. If None, then default T5
conversion rules will be used.
Returns:
Adafactor optimizer updated with parameters and optimizer state from
T5 checkpoint.
"""
if translator is None:
translator = t5_importer
ckpt_data = load_tf_ckpt(path)
t5_data = translator.apply(ckpt_data)
t5_data = _add_missing_param_states(t5_data)
t5_data = _maybe_correct_relpos_bias(t5_data)
state_dict = _update_state_dict(state_dict, t5_data, strict=strict)
if not lazy_parameters:
state_dict = jax.tree_map(
lambda x: x.get() if isinstance(x, LazyArray) else x, state_dict)
return state_dict
|