Spaces:
Build error
Build error
File size: 7,951 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing helpers for fake device meshes and data chunking."""
import contextlib
import dataclasses
import itertools
import operator
from typing import Generator, List, Sequence, Tuple
import unittest
import jax
from jax.experimental.maps import Mesh
import numpy as np
import seqio
from t5x import adafactor
from t5x import models
from t5x import train_state as train_state_lib
from t5x.examples.t5 import network
import tensorflow.compat.v2 as tf
# Mock JAX devices
@dataclasses.dataclass
class CpuDevice:
id: int
process_index: int
device_kind: str = 'cpu'
platform: str = 'cpu'
@dataclasses.dataclass
class GpuDevice:
id: int
process_index: int
device_kind: str = 'gpu'
platform: str = 'Tesla V100-SXM2-16GB'
@dataclasses.dataclass
class TpuDevice:
id: int
process_index: int
coords: Sequence[int]
core_on_chip: int
device_kind: str = 'TPU v3'
platform: str = 'tpu'
# Mock TPU device meshes.
def coords_to_idx(coords: Tuple[int, ...], bounds: Tuple[int, ...]) -> int:
"""Convert grid coordinates to linear index given a dimension ordering.
Args:
coords: coordinates in minor to major ordering.
bounds: coordinate grid bonuds in SAME minor to major ordering as above.
Returns:
Linear index for grid point.
"""
# Calculate stride multipliers.
strides = tuple(itertools.accumulate((1,) + bounds[:-1], operator.mul))
# Sum linear index from strides and coords
return sum(jax.tree_multimap(lambda x, y: x * y, coords, strides))
def make_devices(nx: int,
ny: int,
nz: int,
nc: int = 2,
host_layout: Tuple[int, ...] = (2, 2, 1, 2),
kind='TPU v3'):
"""Create mock TPU devices."""
devices = []
device_bounds = (nx, ny, nz, nc)
hnx, hny, hnz, hnc = jax.tree_multimap(lambda a, b: a // b, device_bounds,
host_layout)
for x, y, z, c in itertools.product(*map(range, device_bounds)):
hx, hy, hz, hc = jax.tree_multimap(lambda a, b: a // b, (x, y, z, c),
host_layout)
# TODO(levskaya, jekbradbury): verify this id/host ordering on TPU v4
device_id = coords_to_idx((c, x, y, z), (nc, nx, ny, nz)) # pytype: disable=wrong-arg-types
process_index = coords_to_idx((hc, hx, hy, hz), (hnc, hnx, hny, hnz)) # pytype: disable=wrong-arg-types
devices.append(
TpuDevice(
id=device_id,
process_index=process_index,
coords=(x, y, z),
core_on_chip=c,
platform='tpu',
device_kind=kind))
return devices
def get_t5_test_model(**config_overrides) -> models.EncoderDecoderModel:
"""Returns a tiny T5 1.1 model to use for testing."""
tiny_config = network.T5Config(
vocab_size=32128,
dtype='bfloat16',
emb_dim=8,
num_heads=4,
num_encoder_layers=2,
num_decoder_layers=2,
head_dim=3,
mlp_dim=16,
mlp_activations=('gelu', 'linear'),
dropout_rate=0.0,
logits_via_embedding=False,
)
tiny_config = dataclasses.replace(tiny_config, **config_overrides)
sentencepiece_model_file = 'gs://t5-data/vocabs/cc_all.32000.100extra/sentencepiece.model'
vocabulary = seqio.SentencePieceVocabulary(sentencepiece_model_file)
return models.EncoderDecoderModel(
module=network.Transformer(tiny_config),
input_vocabulary=vocabulary,
output_vocabulary=vocabulary,
optimizer_def=adafactor.Adafactor(
decay_rate=0.8,
step_offset=0,
logical_factor_rules=adafactor.standard_logical_factor_rules()))
# -------------------- Mesh parametrization helpers --------------------
# Adapted from jax.test_util
MeshSpec = List[Tuple[str, int]]
@contextlib.contextmanager
def with_mesh(named_shape: MeshSpec) -> Generator[None, None, None]:
"""Test utility for setting up meshes given mesh data from `schedules`."""
axis_names, shape = zip(*named_shape)
size = np.prod(shape)
local_devices = list(jax.local_devices())
if len(local_devices) < size:
raise unittest.SkipTest(f'Test requires {size} local devices')
mesh_devices = np.array(local_devices[:size]).reshape(shape)
with Mesh(mesh_devices, axis_names):
yield
def create_global_mesh(mesh_shape, axis_names):
size = np.prod(mesh_shape)
if len(jax.devices()) < size:
raise unittest.SkipTest(f'Test requires {size} global devices.')
devices = sorted(jax.devices(), key=lambda d: d.id)
mesh_devices = np.array(devices[:size]).reshape(mesh_shape)
global_mesh = Mesh(mesh_devices, axis_names)
return global_mesh
def get_fake_vocab():
"""Creates fake vocabulary compatible with `get_fake_tokenized_dataset`."""
@dataclasses.dataclass
class DummyVocab:
vocab_size: int = 128
eos_id: int = 1
vocab = DummyVocab()
return (vocab, vocab)
# Text preprocessed and tokenized.
_FAKE_TOKENIZED_DATASET = {
'train': [
{
'inputs': (3, 13, 7, 14, 15, 9, 4, 16),
'inputs_pretokenized': 'complete: this',
'targets': (3, 8, 6, 3, 5, 10),
'targets_pretokenized': 'is a test'
},
{
'inputs': (3, 13, 7, 14, 15, 9, 4, 16),
'inputs_pretokenized': 'complete: that',
'targets': (17, 5, 6, 3, 5, 10),
'targets_pretokenized': 'was a test'
},
{
'inputs': (3, 13, 7, 14, 15, 9, 4, 16),
'inputs_pretokenized': 'complete: those',
'targets': (17, 4, 23, 4, 10, 6),
'targets_pretokenized': 'were tests'
},
],
# Notice that we repeat consecutively each examples 4 times,
# this needed for tests like infer_tests to validate determinism.
'validation': [{
'inputs': (3, 13, 7, 14, 15, 9, 4, 16),
'inputs_pretokenized': 'complete: this',
'targets': (3, 8, 6, 3, 5, 3, 25, 5),
'targets_pretokenized': 'is a validation',
}] * 4 + [{
'inputs': (3, 13, 7, 14, 15, 9, 4, 17),
'inputs_pretokenized': 'complete: that',
'targets': (17, 5, 6, 3, 5, 22, 7, 24),
'targets_pretokenized': 'was another validation',
}] * 4
}
def get_fake_tokenized_dataset(*_, split='validation', **__):
"""Creates fake dataset compatible with T5X models inputs."""
if split == 'test':
split = 'validation'
output_types = {
'inputs': tf.int32,
'targets': tf.int32,
'inputs_pretokenized': tf.string,
'targets_pretokenized': tf.string
}
output_shapes = {
'inputs': [None],
'targets': [None],
'inputs_pretokenized': [],
'targets_pretokenized': []
}
ds = tf.data.Dataset.from_generator(lambda: _FAKE_TOKENIZED_DATASET[split],
output_types, output_shapes)
if split == 'train':
ds = ds.repeat(None)
return ds
def assert_same(tree_a, tree_b):
"""Asserts that both trees are the same."""
tree_a, tree_b = jax.device_get((tree_a, tree_b))
jax.tree_multimap(np.testing.assert_array_equal, tree_a, tree_b)
def get_train_state_from_variables(variables,
optimizer_def=adafactor.Adafactor(0.0)):
"""Returns a default Train State with Adafactor optimizer."""
optimizer = optimizer_def.create(variables['params'])
return train_state_lib.FlaxOptimTrainState(optimizer)
|