Spaces:
Build error
Build error
File size: 28,422 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint:disable=line-too-long
# pyformat: disable
r"""This script runs inference on a T5X-compatible model.
"""
# pyformat: enable
# pylint:enable=line-too-long
import concurrent.futures
import functools
import hashlib
import json
import os
import re
import shutil
import time
from typing import Any, Callable, Iterator, List, Mapping, Optional, Sequence, Tuple, Type
# TODO(adarob): Re-enable once users are notified and tests are updated.
# Must be set before flax imports.
# pylint:disable=g-import-not-at-top
os.environ['FLAX_LAZY_RNG'] = 'no'
from absl import logging
from clu import metric_writers
import jax
from jax.experimental import multihost_utils
import jax.numpy as jnp
import numpy as np
import seqio
from t5x import gin_utils
from t5x import models
from t5x import partitioning
from t5x import utils
import tensorflow as tf
from tensorflow.io import gfile
from typing_extensions import Protocol
# Automatically search for gin files relative to the T5X package.
_DEFAULT_GIN_SEARCH_PATHS = [
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
]
AUTOTUNE = tf.data.experimental.AUTOTUNE
class SummarizeConfigFn(Protocol):
def __call__(self, model_dir: str,
summary_writer: Optional[metric_writers.SummaryWriter],
step: int) -> None:
...
class FailFastThreadPoolExecutor(concurrent.futures.ThreadPoolExecutor):
"""Wrapper for ThreadPoolExecutor that crashes main thread on exceptions.
NOTE: this class should be used only from the main thread.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._incomplete_futures: List[concurrent.futures.Future] = []
def check_for_exceptions(self, wait: bool = False):
"""Raises any exceptions from complete futures on the main thread."""
still_incomplete_futures = []
for future in self._incomplete_futures:
try:
exception = future.exception(timeout=0 if wait else None)
except concurrent.futures.TimeoutError:
still_incomplete_futures.append(future)
if exception is not None:
raise exception
self._incomplete_futures = still_incomplete_futures
def submit(self, *args, **kwargs) -> concurrent.futures.Future:
"""Submit function to threadpool, capturing the returned future."""
future = super().submit(*args, **kwargs)
self._incomplete_futures.append(future)
self.check_for_exceptions(wait=False)
return future
def shutdown(self, *args, wait: bool = False, **kwargs):
self.check_for_exceptions(wait=wait)
super().shutdown(*args, **kwargs)
def create_task_from_tfexample_file(paths: Sequence[str],
file_type: str,
inputs_key: str,
targets_key: Optional[str],
features: Mapping[str, seqio.Feature],
task_id: Optional[str] = None) -> str:
"""Registers ad-hoc Task for file-based dataset of TFExamples.
Args:
paths: Input file paths; all files should have type `file_type` and contain
binary-serialized TFExample protos.
file_type: Input file type; e.g., 'tfrecord', 'recordio', 'sstable'. For
keyed formats like 'sstable', we ignore the keys and use only the values.
inputs_key: Name of TFExample feature containing the input text for T5X. The
value of this feature should be a UTF8-encoded string.
targets_key: Optional name of a TFExample feature containing the target text
(relevant only in scoring mode). The value of this feature should be a
UTF8-encoded string.
features: Should have entries for keys 'inputs' and (if targets_key is not
None) 'targets', mapping to `seqio.Feature` objects that specify
attributes like vocabulary, add_eos, etc. These attributes are used for
preprocessing and featurizing the input text.
task_id: Task name identifier. By default, it is set to a unique and
deterministic hash id. Overrideable via this argument.
Returns:
Name of the newly-registered Task. This Task has a split named 'infer' that
contains the preprocessed and featurized input dataset.
"""
# tf.io.gfile.glob supports lists, in contrast to gfile.glob.
files = tf.io.gfile.glob(paths)
if files:
logging.info('Using tfexample files %s', files)
else:
# Fail early if there's something wrong with the input file pattern.
raise ValueError('Missing or invalid paths: %s' % paths)
reader = {
'tfrecord':
tf.data.TFRecordDataset,
}[file_type]
feature_description = {inputs_key: tf.io.FixedLenFeature([], tf.string)}
if targets_key:
feature_description[targets_key] = tf.io.FixedLenFeature([], tf.string)
# Create a unique, deterministic task name.
if task_id is None:
task_id = hashlib.md5(
':'.join(list(paths) +
[inputs_key, targets_key or '']).encode()).hexdigest()[:10]
task = seqio.TaskRegistry.add(
name=f'infer_{task_id}',
source=seqio.TFExampleDataSource({'infer': paths},
feature_description=feature_description,
reader_cls=reader),
preprocessors=[
functools.partial(
seqio.preprocessors.rekey,
key_map={
'inputs': inputs_key,
'targets': targets_key
}), seqio.preprocessors.tokenize_and_append_eos
],
output_features=features)
return task.name
def merge_chunks_to_file(
output_dir: str,
output_fname: str,
tmp_dir: str,
step: Optional[int],
) -> None:
"""Merge the predictions from different chunks into a unified file."""
logging.info('Merging chunk results.')
# Merge chunks into single file.
chunk_paths = sorted(
gfile.glob(os.path.join(tmp_dir, f'{output_fname}-chunk?????')))
if not chunk_paths:
raise FileNotFoundError(
'No chunk results found! One possible explanation is that your '
'input did not contain any examples')
assert int(chunk_paths[-1][-5:]) + 1 == len(chunk_paths), (
f'Expecting {int(chunk_paths[-1][-5:])} chunk paths, found '
f'{len(chunk_paths)}')
output_path = os.path.join(output_dir, output_fname)
del step
with gfile.GFile(output_path, 'wb') as merged:
for chunk_path in chunk_paths:
with gfile.GFile(chunk_path, 'rb') as ef:
shutil.copyfileobj(ef, merged)
logging.info('Results written to %s.', output_path)
_Inferences = Tuple[Sequence[Any], Mapping[str, Any]]
def write_inferences_to_file(
path: str,
inferences: _Inferences,
task_ds: tf.data.Dataset,
mode: str,
vocabulary: Optional[seqio.Vocabulary] = None,
json_encoder_cls: Type[json.JSONEncoder] = seqio.TensorAndNumpyEncoder,
include_all_inputs: bool = False,
input_fields_to_include: Optional[Sequence[str]] = None,
output_ids: bool = False) -> None:
"""Write model predictions, along with pretokenized inputs, to JSONL file.
Args:
path: File path to write to.
inferences: A tuple containing (predictions, aux_values). If mode is
'predict' then the `predictions` will be token IDs. If it's
'scores' then it'll be a collection of scores. `aux_values` will be an
empty dictionary unless mode is 'predict_with_aux', in which case it'll
contain the model's auxiliary outputs.
task_ds: Original task dataset. Features from task with suffix
`_pretokenized` are added to the outputs.
mode: Prediction mode, either 'predict', 'score' or 'predict_with_aux'.
vocabulary: Task output vocabulary. Only used in `predict` mode in order to
decode predicted outputs into string.
json_encoder_cls: a JSON encoder class used to customize JSON serialization
via json.dumps.
include_all_inputs: if True, will include all model inputs in the output
JSONL file (including raw tokens) in addition to the pretokenized inputs.
input_fields_to_include: List of input fields to include in the output JSONL
file. This list should be None if `include_all_inputs` is set to True.
output_ids: if True, will output the token ID sequence for the output, in
addition to the decoded text.
"""
all_predictions, all_aux_values = inferences
if mode in ('predict', 'predict_with_aux') and vocabulary is None:
raise ValueError('The `vocabulary` parameter is required in `predict` and '
'`predict_with_aux` modes')
def _json_compat(value):
if isinstance(value, bytes):
return value.decode('utf-8')
elif isinstance(value, (jnp.bfloat16, jnp.floating)):
return float(value)
elif isinstance(value, jnp.integer):
return float(value)
elif isinstance(value, (jnp.ndarray, np.ndarray)):
# Flatten array features.
return value.tolist()
else:
return value
if include_all_inputs and input_fields_to_include is not None:
raise ValueError(
'include_all_inputs and input_fields_to_include should not be set'
' simultaneously.')
with gfile.GFile(path, 'w') as f:
for i, inp in task_ds.enumerate().as_numpy_iterator():
predictions = all_predictions[i]
aux_values = {aux_field: v[i] for aux_field, v in all_aux_values.items()}
if include_all_inputs:
inputs = inp
elif input_fields_to_include is not None:
inputs = {
k: v for k, v in inp.items() if k in input_fields_to_include or
(k.endswith('_pretokenized') and
k[:-len('_pretokenized')] in input_fields_to_include)
}
else:
inputs = {k: v for k, v in inp.items() if k.endswith('_pretokenized')}
json_dict = {}
json_dict['inputs'] = {k: _json_compat(v) for k, v in inputs.items()}
if mode == 'predict':
assert vocabulary is not None
json_dict['prediction'] = _json_compat(
vocabulary.decode_tf(tf.constant(predictions)).numpy())
if output_ids:
pred = _json_compat(tf.constant(predictions).numpy())
# Truncate padding tokens.
assert isinstance(pred, list)
pred = pred[:pred.index(0)] if 0 in pred else pred
json_dict['prediction_tokens'] = pred
elif mode == 'score':
json_dict['score'] = _json_compat(predictions)
elif mode == 'predict_with_aux':
assert vocabulary is not None
json_dict['prediction'] = _json_compat(
vocabulary.decode_tf(tf.constant(predictions)).numpy())
if output_ids:
pred = _json_compat(tf.constant(predictions).numpy())
# Truncate padding tokens.
pred = pred[:pred.index(0)] if 0 in pred else pred
json_dict['prediction_tokens'] = pred
json_dict['aux'] = jax.tree_map(_json_compat, aux_values)
else:
raise ValueError(f'Invalid mode: {mode}')
json_str = json.dumps(json_dict, cls=json_encoder_cls)
f.write(json_str + '\n')
WriteFn = Callable[[
str,
_Inferences,
tf.data.Dataset,
str,
Optional[seqio.Vocabulary],
], None]
MergeFn = Callable[[str, str, str, Optional[int]], None]
def _extract_tokens_and_aux_values(inference_fn_outputs) -> _Inferences:
"""Extracts tokens and aux scores from a cached dataset."""
all_aux_values = {}
if isinstance(inference_fn_outputs, tuple):
indices_and_tokens, all_aux_values = inference_fn_outputs
indices, tokens = zip(*indices_and_tokens)
permutation = np.argsort(indices)
tokens = [tokens[permutation[i]] for i in range(len(permutation))]
for aux_keys, aux_values in all_aux_values.items():
all_aux_values[aux_keys] = [
aux_values[permutation[i]] for i in range(len(permutation))
]
else:
indices_and_tokens = inference_fn_outputs
_, tokens = zip(*sorted(indices_and_tokens, key=lambda x: x[0]))
return tokens, all_aux_values
def infer(
*,
mode: str,
model: models.BaseTransformerModel,
dataset_cfg: utils.DatasetConfig,
restore_checkpoint_cfg: utils.RestoreCheckpointConfig,
partitioner: partitioning.BasePartitioner,
output_dir: str,
checkpoint_period: int,
shard_id: int = 0,
num_shards: int = 1,
merge_chunked_results: bool = True,
write_fn: WriteFn = write_inferences_to_file,
checkpoint_ds_iter: bool = True,
fallback_init_rng: Optional[int] = None,
merge_fn: MergeFn = merge_chunks_to_file,
summarize_config_fn: SummarizeConfigFn = gin_utils.summarize_gin_config,
):
"""Infer function.
Args:
mode: Either 'predict' to decode targets, 'score' to compute the log
likelihood of given targets, or 'predict_with_aux' for both.
model: The model object to use for inference.
dataset_cfg: Specification for the dataset to infer based on.
restore_checkpoint_cfg: Specification for the model parameter checkpoint to
load.
partitioner: Partitioner for model parameters and data across devices.
output_dir: Path to directory to write temporary files and final results.
checkpoint_period: The intermediate results and dataset iterator will be
checkpointed on each multiple of this number of batches to enable
continuation after a failure.
shard_id: Index of dataset shard for this instance to use if splitting the
work across multiple jobs.
num_shards: Total number of dataset shards to split dataset across.
merge_chunked_results: Whether to merge results of all chunks into a single
json file.
write_fn: Callable function used to serialized and write inferences out to
files.
checkpoint_ds_iter: if True, will checkpoint the dataset iterator every
`checkpoint_period` to enable faster restore. This must be disabled for
certain datasets, for example since stateful iterators (e.g. from
seqio.FunctionTask) cannot be checkpointed.
fallback_init_rng: A random seed used for parameter initialization during
model re-loading when utils.RestoreCheckpointConfig.fallback_to_scratch is
set to True. If None, parameter initialization is not allowed during model
loading and having fallback_to_scratch enabled will result in an error.
merge_fn: Callable function used to merge inferences from multiple files.
summarize_config_fn: A function that takes in the model directory, an
optional SummaryWriter, and the step number, and writes a summary of the
configuration. SummaryWriter will be None in most cases.
"""
logging.info('Process ID: %d', jax.process_index())
summarize_config_fn(model_dir=output_dir, summary_writer=None, step=0)
if mode not in ('predict', 'score', 'predict_with_aux'):
raise ValueError(
"`mode` must be one of 'predict', 'score' or 'predict_with_aux'. "
f"Got '{mode}'")
# Remove double-slashes in directory path to avoid inconsistencies.
output_dir = re.sub(r'(?<!gs:)([\/]{2,})', '/', output_dir)
ds_vocabs = utils.get_vocabulary(dataset_cfg)
if (ds_vocabs[0] != model.input_vocabulary or
ds_vocabs[1] != model.output_vocabulary):
raise ValueError(
'Model and Task vocabularies do not match.\n'
f'Task Input: {ds_vocabs[0]}, Model Input: {model.input_vocabulary}\n'
f'Task Output: {ds_vocabs[1]}, Model Output: {model.output_vocabulary}')
batch_size = dataset_cfg.batch_size
# Set up dataset.
if dataset_cfg.module:
utils.import_module(dataset_cfg.module)
host_shard_info = seqio.ShardInfo(index=shard_id, num_shards=num_shards)
task_or_mixture = seqio.get_mixture_or_task(dataset_cfg.mixture_or_task_name)
feature_converter = model.FEATURE_CONVERTER_CLS(pack=False)
def _get_dataset(dataset_provider):
# TODO(adarob): assert pack is false, shuffle is false, seed?
return dataset_provider.get_dataset(
sequence_length=dataset_cfg.task_feature_lengths,
split=dataset_cfg.split,
shuffle=False,
num_epochs=1,
shard_info=host_shard_info,
use_cached=dataset_cfg.use_cached,
seed=dataset_cfg.seed)
# Each "chunk" should be how often we checkpoint the input dataset and flush
# the inferences to disk.
logging.info('Inferring with checkpoints every %d batches of %d examples.',
checkpoint_period, batch_size)
logging.info('Initializing model, optimizer, and step functions.')
element_spec = feature_converter(
_get_dataset(task_or_mixture),
dataset_cfg.task_feature_lengths).element_spec
input_shapes = {
k: (batch_size,) + spec.shape for k, spec in element_spec.items()
}
input_types = {
k: jnp.dtype(spec.dtype.as_numpy_dtype)
for k, spec in element_spec.items()
}
# Initialize optimizer from the existing checkpoint.
# TODO(adarob): Support inference over multiple checkpoints.
train_state_initializer = utils.TrainStateInitializer(
optimizer_def=None, # Do not load optimizer state.
init_fn=model.get_initial_variables,
input_shapes=input_shapes,
input_types=input_types,
partitioner=partitioner)
# Log the variable shapes information and write to a file.
model_info_log_file = os.path.join(output_dir, 'model-info.txt')
if shard_id == 0:
utils.log_model_info(model_info_log_file,
train_state_initializer.global_train_state_shape,
partitioner)
# Disable strictness since we are dropping the optimizer state.
restore_checkpoint_cfg.strict = False
if fallback_init_rng is not None:
fallback_init_rng = jax.random.PRNGKey(fallback_init_rng)
train_state = train_state_initializer.from_checkpoint(
[restore_checkpoint_cfg], init_rng=fallback_init_rng)
if mode == 'predict':
infer_step = model.predict_batch
elif mode == 'predict_with_aux':
infer_step = model.predict_batch_with_aux
else: # mode == 'score'
infer_step = model.score_batch
infer_fn = functools.partial(
utils.get_infer_fn(
infer_step=infer_step,
batch_size=batch_size,
train_state_axes=train_state_initializer.train_state_axes,
partitioner=partitioner),
train_state=train_state)
def infer_task(task: seqio.Task):
tmp_dir = os.path.join(output_dir,
f'tmp-{task.name}-{shard_id:05}-of-{num_shards:05}')
if jax.process_index() == 0:
gfile.makedirs(tmp_dir)
# Use `max_workers=1` to ensure writes occur sequentially.
write_thread_pool = FailFastThreadPoolExecutor(max_workers=1)
logging.info("Loading dataset for task '%s'.", task.name)
ds = _get_dataset(task)
model_ds = feature_converter(
ds, task_feature_lengths=dataset_cfg.task_feature_lengths)
# Zip task and model features.
# (task, model)
infer_ds = tf.data.Dataset.zip((ds, model_ds))
# Create batches the size of each chunk and index them.
# (i, [(task, model)] * chunk_size)
infer_ds = infer_ds.padded_batch(
checkpoint_period * batch_size, drop_remainder=False).enumerate()
infer_ds_iter: Iterator[Tuple[int, Any]] = iter(infer_ds.prefetch(AUTOTUNE))
if checkpoint_ds_iter:
# Create checkpoint manager and restore state, if applicable.
ckpt_path = os.path.join(tmp_dir, 'input.ckpt')
input_ckpt = tf.train.Checkpoint(ds=infer_ds_iter)
if gfile.glob(ckpt_path + '*'):
logging.info('Restoring input iterator from %s', ckpt_path)
input_ckpt.read(ckpt_path).assert_consumed()
output_fname = f'{task.name}-{mode}.jsonl-{shard_id:05}-of-{num_shards:05}'
if gfile.exists(os.path.join(output_dir, output_fname)):
logging.info(
"File %s exists. Skipping inference for shard %d/%d of task '%s'",
output_fname, shard_id, num_shards, task.name)
return
logging.info("Starting inference loop for shard %d of %d of task '%s'.",
shard_id, num_shards, task.name)
def _write_chunk_and_canonicalize_ckpt(chunk: int, chunk_path: str,
inferences: _Inferences,
task_ds: tf.data.Dataset,
chunk_ckpt_path: Optional[str]):
write_tick = time.time()
logging.info('Writing chunk %d results to %s', chunk, chunk_path)
write_fn(chunk_path, inferences, task_ds, mode,
task.output_features['targets'].vocabulary)
with gfile.GFile(chunk_path + '.COMPLETED', 'w') as f:
f.write('')
write_time = time.time() - write_tick
logging.info('Writing completed in %02f seconds (%02f examples/sec).',
write_time,
len(inferences) / write_time)
update_measurement_series('writing_total_sec', chunk, write_time)
update_measurement_series('writing_examples_per_sec', chunk,
len(inferences) / write_time)
if chunk_ckpt_path:
# Canonicalize checkpoint.
for fname in gfile.glob(chunk_ckpt_path + '*'):
gfile.rename(
fname, fname.replace(chunk_ckpt_path, ckpt_path), overwrite=True)
# Main Loop over "chunks".
for chunk, chunk_batch in infer_ds_iter:
logging.info('Starting chunk %d', chunk)
chunk_tick = time.time()
# Load the dataset for the next chunk. We can't use `infer_ds_iter`
# directly since `infer_fn` needs to know the exact size of each chunk,
# which may be smaller for the final one.
chunk_ds = tf.data.Dataset.from_tensor_slices(chunk_batch)
chunk_ds.cache().prefetch(AUTOTUNE)
# Unzip chunk dataset in to pretokenized and model datasets.
task_ds = chunk_ds.map(lambda p, m: p, num_parallel_calls=AUTOTUNE)
model_ds = chunk_ds.map(lambda p, m: m, num_parallel_calls=AUTOTUNE)
# Get a chunk-specific RNG key.
chunk_rng = jax.random.fold_in(jax.random.PRNGKey(0), chunk)
chunk_path = os.path.join(tmp_dir, f'{output_fname}-chunk{chunk:05}')
if gfile.exists(chunk_path + '.COMPLETED') and not checkpoint_ds_iter:
logging.info('Skipping chunk %s. Chunk file already exists.', chunk)
continue
logging.info('Running inference on %d batches.', checkpoint_period)
inferences = _extract_tokens_and_aux_values(
infer_fn(model_ds.enumerate(), rng=chunk_rng))
if jax.process_index() == 0:
chunk_time = time.time() - chunk_tick
logging.info('chunk completed in %02f seconds (%02f examples/sec).',
chunk_time,
len(inferences) / chunk_time)
update_measurement_series('inference_total_sec', chunk, chunk_time)
update_measurement_series('inference_examples_per_sec', chunk,
len(inferences) / chunk_time)
chunk_ckpt_path = None
if checkpoint_ds_iter:
# Store iterator checkpoint in temporary location before writing the
# model output asynchronously. After outputs are written, the
# checkpoint will be moved to the canonical location to be used if
# restart occurs.
ckpt_tick = time.time()
chunk_ckpt_path = input_ckpt.write(
os.path.join(tmp_dir, f'{chunk}.ckpt'))
logging.info(
'Checkpoint written to temporary location in %02f seconds.',
time.time() - ckpt_tick)
# These will execute sequentially since the ThreadPool size is 1.
write_thread_pool.submit(
_write_chunk_and_canonicalize_ckpt,
chunk=chunk,
chunk_path=chunk_path,
inferences=inferences,
task_ds=task_ds,
chunk_ckpt_path=chunk_ckpt_path)
# Wait for checkpoint to be written before continuing.
multihost_utils.sync_global_devices(
f'{task.name}:checkpoint_chunk{chunk:05}')
logging.info("Finished inference for task '%s'.", task.name)
logging.info('Waiting for chunk writes to complete.')
write_thread_pool.shutdown(wait=True)
if jax.process_index() == 0 and merge_chunked_results:
step = None if train_state is None else int(train_state.step)
merge_fn(output_dir, output_fname, tmp_dir, step)
logging.info('Deleting temporary files.')
gfile.rmtree(tmp_dir)
# Wait for host 0 to finish writing before exiting.
multihost_utils.sync_global_devices(f'{task.name}:complete')
for task in seqio.get_subtasks(task_or_mixture):
logging.info("Starting inference for task '%s'", task.name)
infer_task(task)
logging.info('DONE')
def update_measurement_series(series_name: str, step: int, value: float):
"""Not implemented externally."""
del series_name, step, value
if __name__ == '__main__':
# pylint:disable=g-import-not-at-top
from absl import app
from absl import flags
import gin
# pylint:enable=g-import-not-at-top
FLAGS = flags.FLAGS
jax.config.parse_flags_with_absl()
flags.DEFINE_integer(
'shard_id',
default=None,
help='Index to use for splitting the Task across multiple inference '
'runs. NB: If set, this overrides --gin.infer.shard_id')
flags.DEFINE_multi_string(
'gin_file',
default=None,
help='Path to gin configuration file. Multiple paths may be passed and '
'will be imported in the given order, with later configurations '
'overriding earlier ones.')
flags.DEFINE_multi_string(
'gin_bindings', default=[], help='Individual gin bindings.')
flags.DEFINE_list(
'gin_search_paths',
default=['.'],
help='Comma-separated list of gin config path prefixes to be prepended '
'to suffixes given via `--gin_file`. If a file appears in. Only the '
'first prefix that produces a valid path for each suffix will be '
'used.')
flags.DEFINE_string(
'tfds_data_dir', None,
'If set, this directory will be used to store datasets prepared by '
'TensorFlow Datasets that are not available in the public TFDS GCS '
'bucket. Note that this flag overrides the `tfds_data_dir` attribute of '
'all `Task`s.')
def main(argv: Sequence[str]):
"""Wrapper for pdb post mortems."""
_main(argv)
def _main(argv: Sequence[str]):
"""True main function."""
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
if FLAGS.tfds_data_dir:
seqio.set_tfds_data_dir_override(FLAGS.tfds_data_dir)
# Create gin-configurable version of `infer`.
infer_using_gin = gin.configurable(infer)
gin_utils.parse_gin_flags(
# User-provided gin paths take precedence if relative paths conflict.
FLAGS.gin_search_paths + _DEFAULT_GIN_SEARCH_PATHS,
FLAGS.gin_file,
FLAGS.gin_bindings)
# See http://yaqs/7882016229479677952 for further gin-config discussion.
def _get_gin_parameter(key: str) -> Any:
value = gin.query_parameter(key)
if isinstance(value, gin.config.ConfigurableReference):
if value.evaluate:
return value.scoped_configurable_fn()
return value.scoped_configurable_fn
return value
shard_id = (
FLAGS.shard_id
if FLAGS.shard_id is not None else _get_gin_parameter('infer.shard_id'))
if shard_id == 0:
gin_utils.summarize_gin_config(
model_dir=_get_gin_parameter('infer.output_dir'),
summary_writer=None,
step=0)
if FLAGS.shard_id is not None:
# We fall back to this flag since XM does not support sweeps over flags
# with '.' in them (it treats them like nested dictionaries).
# TODO(adarob): Figure out a workaround so we can deprecate this flag.
infer_using_gin(shard_id=FLAGS.shard_id)
else:
infer_using_gin()
gin_utils.run(main)
|