Spaces:
Build error
Build error
File size: 27,968 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Script to pretrain or finetune in JAX using a SeqIO pipeline.
"""
import functools
import math
import os
import time
from typing import Callable, Sequence, Mapping, Tuple, Type, Optional
# Set Linen to add profiling information when constructing Modules.
# Must be set before flax imports.
# pylint:disable=g-import-not-at-top
os.environ['FLAX_PROFILE'] = 'true'
# TODO(adarob): Re-enable once users are notified and tests are updated.
os.environ['FLAX_LAZY_RNG'] = 'no'
from absl import logging
from clu import metric_writers
import clu.data
import jax
from jax import random
from jax.experimental import multihost_utils
import jax.numpy as jnp
import numpy as np
import seqio
from t5x import models
from t5x import partitioning
from t5x import train_state as train_state_lib
from t5x import trainer as trainer_lib
from t5x import utils
import tensorflow as tf
# Automatically search for gin files relative to the T5X package.
_DEFAULT_GIN_SEARCH_PATHS = [
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
]
PyTreeDef = type(jax.tree_structure(None))
P = partitioning.PartitionSpec
# Special key that used to distinguish train metrics.
TRAIN_METRIC_KEY = 'train'
# String keys that is acceptable from config.
_ACTION_KEYS = frozenset(trainer_lib.ActionMode.__members__.keys())
def run_actions(
mode: trainer_lib.ActionMode, actions: trainer_lib.ActionMapType,
train_state: train_state_lib.TrainState,
metrics_by_task: Mapping[str, trainer_lib.MetricValueMapType]) -> bool:
"""Invokes all actions on the given mode on host 0, then broadcasts to all.
Args:
mode: The mode to run the actions. e.g., if mode is `train`, only actions
configured to run with `train` mode will be invoked.
actions: A mapping of actions that runs after train, eval or infer_eval, to
inspect the model and perform useful operations, e.g., early stopping.
train_state: The current train_state of the trainer.
metrics_by_task: A map of metrics keyed by task name.
Returns:
A bool indicating whether training should be halted.
Raises:
RuntimeError: When the metrics processed on host 0 is None.
"""
stop_training = False
if jax.process_index() == 0:
if not metrics_by_task:
raise RuntimeError('Metric is unexpectedly empty on process 0')
for action in actions.get(mode, []):
stop_training |= action.run(train_state, metrics_by_task=metrics_by_task)
# Broadcast result from host 0 to others.
return bool(multihost_utils.broadcast_one_to_all(jnp.array(stop_training)))
def train(
*,
model: models.BaseTransformerModel,
train_dataset_cfg: utils.DatasetConfig,
train_eval_dataset_cfg: Optional[utils.DatasetConfig],
infer_eval_dataset_cfg: Optional[utils.DatasetConfig],
checkpoint_cfg: utils.CheckpointConfig,
partitioner: partitioning.BasePartitioner,
trainer_cls: Type[trainer_lib.BaseTrainer],
model_dir: str,
total_steps: int,
eval_steps: int,
eval_period: int,
stats_period: Optional[int] = None,
random_seed: Optional[int],
use_hardware_rng: bool = False,
summarize_config_fn: Callable[[str, metric_writers.MetricWriter, int],
None],
inference_evaluator_cls: Type[seqio.Evaluator] = seqio.Evaluator,
get_dataset_fn: utils.GetDatasetCallable = utils.get_dataset,
concurrent_metrics: bool = True,
actions: Optional[Mapping[str, Sequence[trainer_lib.BaseAction]]] = None,
train_eval_get_dataset_fn: Optional[utils.GetDatasetCallable] = None,
run_eval_before_training: bool = False,
use_gda: bool = False) -> Tuple[int, train_state_lib.TrainState]:
"""Train function.
Args:
model: The model object to use for training.
train_dataset_cfg: Specification for the dataset to train with.
train_eval_dataset_cfg: Specification for the dataset to evaluate with using
the train metrics and no inference (e.g., uses teacher forcing). If None,
train eval is disabled.
infer_eval_dataset_cfg: Specification for the dataset to evaluate with using
the inference metrics (e.g., uses sampled decoding). If None, inference
eval is disabled.
checkpoint_cfg: Specification for saving and restoring model parameters and
dataset state to/from checkpoints.
partitioner: Partitioner for model parameters and data across devices.
trainer_cls: An implementation of BaseTrainer.
model_dir: Path of directory to store checkpoints and metric summaries.
total_steps: The step number to stop training after. The number of actual
steps trained in this run will be this number minus the starting step from
the checkpoint.
eval_steps: The number of batches to process for each train-eval loop.
eval_period: The number of train steps between each evaluation (both
train-eval and infer-eval).
stats_period: The number of train steps between writing scalar stats. If
None, defaults to eval_period.
random_seed: A random seed to use for dropout and initialization. If None, a
fast, non-deterministic hardware-based RNG is used.
use_hardware_rng: Whether to force using the RngBitGenerator based hardware
rng, which takes seeds and acts similarly to software PRNG in that it
should be seed-deterministic. The new RngBitGenerator custom PRNG system
should be reproducible for a given sharding, but the numbers will change
for different shardings of the same model.
summarize_config_fn: A function that takes in the model directory, a
SummaryWriter, and the step number, and writes a summary of the
inference_evaluator_cls: seqio.Evaluator class to use for inference
evaluation, potentially with bound configuration args.
get_dataset_fn: The callable use to get the train and train-eval datasets
based on the DatasetConfig and shard information.
concurrent_metrics: If True, allow metrics computation and logging to
overlap with training. Will likely result in additional TPU memory usage.
actions: A mapping of actions that runs after train, eval or infer_eval, to
inspect the model and perform useful operations, e.g., early stopping. The
key must have a 1:1 mapping to ActionMode enum. For EVAL actions to
actually work, this requires `concurrent_metrics` to be turned off, since
chaining futures and mutating states concurrently might be error-prone.
train_eval_get_dataset_fn: Optional callable use to get the train-eval
datasets based on the DatasetConfig and shard information. If missing, it
defaults to `get_dataset_fn`.
run_eval_before_training: If True, calculate training eval and inference
eval metrics before training begins.
use_gda: if True, uses GlobalDeviceArray. Experimental feature.
Returns:
The tuple of (last_step, last_train_state).
"""
logging.info('Process ID: %d', jax.process_index())
tf.io.gfile.makedirs(model_dir)
jax.config.update('jax_parallel_functions_output_gda', use_gda)
# Each "epoch" of the training loop should be the min of the eval period,
# checkpoint period or the full training.
# We compute here to ensure that the eval period and checkpoint period are
# divisible by this number, otherwise we fail.
eval_enabled = (train_eval_dataset_cfg or infer_eval_dataset_cfg)
eval_period = eval_period if eval_enabled else 0
checkpoint_period = checkpoint_cfg.save.period if checkpoint_cfg.save else 0
if eval_period or checkpoint_period:
steps_per_epoch = min(eval_period or np.inf, checkpoint_period or np.inf)
else:
steps_per_epoch = total_steps
stats_period = stats_period or steps_per_epoch
if (eval_period and eval_period % steps_per_epoch or
checkpoint_period and checkpoint_period % steps_per_epoch):
raise ValueError(
f'Checkpoint period ({checkpoint_period}) must evenly divide eval '
f'period ({eval_period}), or vice-versa.')
if use_hardware_rng or random_seed is None:
logging.info(
'Using fast RngBitGenerator PRNG for initialization and dropout.')
if random_seed is None:
random_seed = multihost_utils.broadcast_one_to_all(np.int32(time.time()))
logging.info('Random seed not provided, using RNG seed %s', random_seed)
else:
logging.warning(
'When using hardware RNG with a fixed seed, repeatability is only '
'guaranteed for fixed hardware and partitioning schemes and for a '
'fixed version of this code and its dependencies.')
utils.set_hardware_rng_ops()
rng = random.PRNGKey(random_seed)
else:
logging.info('Using seed for initialization and dropout RNG: %d',
random_seed)
rng = random.PRNGKey(random_seed)
init_rng, trainer_rng = random.split(rng, 2)
# ---------------------------------------------------------------------------
# Initialize datasets
# ---------------------------------------------------------------------------
if (train_dataset_cfg.seed and
not (checkpoint_cfg.save or checkpoint_cfg.save.save_dataset)):
logging.warning(
'Providing a random seed for the train dataset with '
'`checkpoint_train_ds=False` is dangerous since each '
'preemption/restart will cause the dataset to deterministically replay '
'from the beginning.')
data_layout = partitioner.get_data_layout(train_dataset_cfg.batch_size)
ds_shard_id = data_layout.shard_id
num_ds_shards = data_layout.num_shards
def _verify_matching_vocabs(cfg: utils.DatasetConfig):
ds_vocabs = utils.get_vocabulary(cfg)
if (ds_vocabs[0] != model.input_vocabulary or
ds_vocabs[1] != model.output_vocabulary):
raise ValueError(f'Model and Task vocabularies do not match:\n'
f' task={cfg.mixture_or_task_name}\n'
f' ds_vocabs=({ds_vocabs[0]}, {ds_vocabs[1]})\n'
f' model.input_vocabulary={model.input_vocabulary}\n'
f' model.output_vocabulary={model.output_vocabulary}\n')
_verify_matching_vocabs(train_dataset_cfg)
train_ds = get_dataset_fn(train_dataset_cfg, ds_shard_id, num_ds_shards,
model.FEATURE_CONVERTER_CLS)
if isinstance(train_ds, tf.data.Dataset):
train_iter = clu.data.TfDatasetIterator(train_ds)
elif isinstance(train_ds, clu.data.DatasetIterator):
train_iter = train_ds
else:
raise ValueError(
f'get_dataset_fn returned unsupported type {type(train_ds)}.')
if train_eval_dataset_cfg:
_verify_matching_vocabs(train_eval_dataset_cfg)
train_eval_datasets = utils.get_training_eval_datasets(
train_eval_dataset_cfg,
ds_shard_id,
num_ds_shards,
eval_steps,
model.FEATURE_CONVERTER_CLS,
get_dataset_fn=train_eval_get_dataset_fn if train_eval_get_dataset_fn
is not None else get_dataset_fn) # type: Mapping[str, tf.data.Dataset]
if not train_eval_datasets:
logging.warning(
'No train_eval datasets loaded from config `train_eval_dataset_cfg`: '
'%s', train_eval_dataset_cfg)
else:
train_eval_datasets = {}
# The manner in which parameters are initialized follows this order of
# preference:
# 1. From a T5X checkpoint in `model_dir`, if one exists.
# 2. From a T5X or TF checkpoint specified by `cfg.path`, if set.
# 3. From scratch using `init_fn`.
# 1. From a T5X checkpoint in `model_dir`, if one exists.
if checkpoint_cfg.restore is not None:
state_transforms_for_restore = [
functools.partial(fn, is_resuming=True)
for fn in checkpoint_cfg.restore.state_transformation_fns
]
else:
state_transforms_for_restore = []
restore_cfgs = [
utils.RestoreCheckpointConfig(
path=model_dir,
mode='latest',
dtype=checkpoint_cfg.save.dtype,
checkpointer_cls=checkpoint_cfg.save.checkpointer_cls,
# Restore dataset state if it is being saved.
restore_dataset=(checkpoint_cfg.save and
checkpoint_cfg.save.save_dataset),
state_transformation_fns=state_transforms_for_restore)
]
# 2. From a checkpoint specified by `checkpoint_cfg.restore.path`, if set.
if checkpoint_cfg.restore:
if checkpoint_cfg.restore.mode == 'all':
raise ValueError(
"Restore checkpoint mode 'all' is not supported in training.")
# TODO(dhgarrette): Split "restore" behavior into separate configurations
# for the initial restoration for a new run, vs resuming a stopped run.
if isinstance(checkpoint_cfg.restore.path, str):
restore_cfgs.append(checkpoint_cfg.restore)
elif not checkpoint_cfg.restore.path:
# `path` is an empty (non-`str`) sequence, so there is nothing to restore.
pass
else:
raise ValueError(
'Restore checkpoint config may only have a single path in training.')
# Need to use full batch size.
input_shapes = {
k: (data_layout.batch_size, *v.shape[1:])
for k, v in train_ds.element_spec.items()
}
input_types = {
k: v.dtype.as_numpy_dtype() for k, v in train_ds.element_spec.items()
}
init_or_restore_tick = time.time()
train_state_initializer = utils.TrainStateInitializer(
optimizer_def=model.optimizer_def,
init_fn=model.get_initial_variables,
input_shapes=input_shapes,
input_types=input_types,
partitioner=partitioner)
# May be None, empty
valid_restore_cfg, restore_paths = utils.get_first_valid_restore_config_and_paths(
restore_cfgs)
if len(restore_paths) > 1:
raise ValueError('Multiple restore paths not permitted in training.')
checkpointable_train_iter = (
train_iter.iterator
if isinstance(train_iter, clu.data.TfDatasetIterator) else None)
checkpoint_manager = utils.LegacyCheckpointManager(
checkpoint_cfg.save,
valid_restore_cfg,
train_state_initializer.global_train_state_shape,
partitioner,
ds_iter=checkpointable_train_iter,
model_dir=model_dir,
use_gda=use_gda)
train_state = checkpoint_manager.restore(
restore_paths, valid_restore_cfg,
utils.get_fallback_state(
valid_restore_cfg,
lambda rng: train_state_initializer.from_scratch(rng).state_dict(),
init_rng))
# 3. If no checkpoint to restore, init from scratch.
train_state = train_state or train_state_initializer.from_scratch(init_rng)
train_state_axes = train_state_initializer.train_state_axes
init_or_restore_secs = time.time() - init_or_restore_tick
logging.info('Initialize/restore complete (%.2f seconds).',
init_or_restore_secs)
# Log the variable shapes information and write to a file.
log_file = os.path.join(model_dir, 'model-info.txt')
utils.log_model_info(log_file,
train_state_initializer.global_train_state_shape,
partitioner)
# Restore step from last checkpoint or set to 0 if training from scratch.
host_step = int(utils.get_local_data(train_state.step)) # pytype: disable=attribute-error
# ---------------------------------------------------------------------------
# Trainer
# ---------------------------------------------------------------------------
trainer: trainer_lib.BaseTrainer = trainer_cls(
model=model,
train_state=train_state,
partitioner=partitioner,
train_state_axes=train_state_axes,
eval_names=train_eval_datasets.keys(),
summary_dir=model_dir,
rng=trainer_rng)
del train_state
train_metrics = trainer.train_metrics_manager
summarize_config_fn(model_dir, train_metrics.summary_writer, host_step)
train_metrics.write_scalar('timing/init_or_restore_seconds',
init_or_restore_secs, host_step)
# ----------------------------------------------------------------------------
# SeqIO (inference-based) evaluation setup
# ----------------------------------------------------------------------------
# Init evaluator to set up cached datasets
evaluator = None
if infer_eval_dataset_cfg is not None:
_verify_matching_vocabs(infer_eval_dataset_cfg)
evaluator = inference_evaluator_cls(
log_dir=os.path.join(model_dir, 'inference_eval'),
mixture_or_task_name=infer_eval_dataset_cfg.mixture_or_task_name,
feature_converter=model.FEATURE_CONVERTER_CLS(pack=False),
eval_split=infer_eval_dataset_cfg.split,
use_cached=infer_eval_dataset_cfg.use_cached,
seed=infer_eval_dataset_cfg.seed,
sequence_length=infer_eval_dataset_cfg.task_feature_lengths,
use_memory_cache=infer_eval_dataset_cfg.use_memory_cache)
if not evaluator.eval_tasks:
# Skip evaluaton.
evaluator = None
if evaluator is not None:
predict_fn = utils.get_infer_fn(
infer_step=model.predict_batch,
batch_size=infer_eval_dataset_cfg.batch_size,
train_state_axes=train_state_axes,
partitioner=partitioner)
predict_with_aux_fn = utils.get_infer_fn(
infer_step=model.predict_batch_with_aux,
batch_size=infer_eval_dataset_cfg.batch_size,
train_state_axes=train_state_axes,
partitioner=partitioner)
score_fn = utils.get_infer_fn(
infer_step=model.score_batch,
batch_size=infer_eval_dataset_cfg.batch_size,
train_state_axes=train_state_axes,
partitioner=partitioner)
if actions is None:
actions = {}
if set(actions.keys()).difference(_ACTION_KEYS):
raise ValueError(f'actions keys must be one of {_ACTION_KEYS}, but got : '
f'{actions.keys()}')
# Transform the string key into proper ActionMode enum.
actions = {trainer_lib.ActionMode[k]: v for k, v in actions.items()}
if concurrent_metrics and actions.get(trainer_lib.ActionMode.INFER_EVAL,
None) is not None:
logging.warning('Actions for INFER_EVAL will not be triggered when async '
'metrics computation is enabled')
if concurrent_metrics and actions.get(trainer_lib.ActionMode.TRAIN,
None) is not None:
logging.warning('Actions for TRAIN will not be triggered when async '
'metrics computation is enabled')
# ----------------------------------------------------------------------------
# Setup Eval Utility Functions
# ----------------------------------------------------------------------------
def _run_training_eval(first_run: bool = False):
if first_run:
logging.info('Compiling training eval loop.')
trainer.compile_eval({
task: utils.get_zeros_batch_like_dataset(ds)
for task, ds in train_eval_datasets.items()
})
logging.info('Computing training evaluation metrics.')
eval_batch_iters = {
task: ds.as_numpy_iterator()
for task, ds in train_eval_datasets.items()
}
eval_summaries = trainer.eval(eval_batch_iters)
trainer.stop_training = run_actions(trainer_lib.ActionMode.TRAIN_EVAL,
actions, trainer.train_state,
eval_summaries)
def _run_inference_eval():
"""Run prediction based inference eval."""
if evaluator is None:
return
logging.info('Running inference evaluation.')
evaluate_tick = time.time()
all_metrics, _, _ = evaluator.evaluate(
compute_metrics=jax.process_index() == 0,
step=host_step,
predict_fn=functools.partial(
predict_fn,
train_state=trainer.train_state,
rng=jax.random.PRNGKey(0)),
score_fn=functools.partial(score_fn, train_state=trainer.train_state),
predict_with_aux_fn=functools.partial(
predict_with_aux_fn,
train_state=trainer.train_state,
rng=jax.random.PRNGKey(0)),
)
if not concurrent_metrics:
# Ensure metrics are finished being computed.
all_metrics_done = all_metrics.result() or {}
trainer.stop_training = run_actions(trainer_lib.ActionMode.INFER_EVAL,
actions, trainer.train_state,
all_metrics_done)
train_metrics.write_scalar('timing/evaluate_seconds',
time.time() - evaluate_tick, host_step)
# Optionally run teacher-forcing training eval and SeqIO inference-base eval
# before training. Useful for testing how much a model knows before any
# finetuning.
if run_eval_before_training:
if train_eval_datasets:
logging.info('Running training eval before training.')
_run_training_eval(first_run=True)
if evaluator is not None:
logging.info('Running inference eval before training.')
_run_inference_eval()
# ----------------------------------------------------------------------------
# Main training loop
# ----------------------------------------------------------------------------
logging.info('Starting training loop.')
first_step = host_step
if total_steps < first_step:
raise ValueError(
f'Unexpected total_steps ({total_steps}) < checkpoint step '
f' ({first_step}).')
logging.info('Starting main loop over steps %d-%d', first_step, total_steps)
steps_per_epoch = min(steps_per_epoch, total_steps)
first_epoch = first_step // steps_per_epoch
num_epochs = first_epoch + math.ceil(
(total_steps - first_step) / steps_per_epoch)
logging.info('Training with artificial "epochs" of %d steps.',
steps_per_epoch)
logging.info('Compiling train loop.')
logging.flush()
dummy_batch = {
k: np.ones(v.shape, v.dtype) for k, v in train_iter.element_spec.items()
}
trainer.compile_train(dummy_batch)
# Main Loop over "epochs".
for epoch in range(first_epoch, num_epochs):
final_epoch = epoch == num_epochs - 1
logging.info('Epoch %d of %d', epoch, num_epochs)
# `stop_training` is requested, break out the main loop immediately.
if trainer.stop_training:
break
logging.info('BEGIN Train loop.')
try:
# Until the last epoch, `num_steps = steps_per_epoch`
num_steps = min(total_steps - host_step, steps_per_epoch)
epoch_end_step = host_step + num_steps
logging.info('Training for %d steps.', num_steps)
while host_step < epoch_end_step:
if trainer.stop_training:
logging.info('Saving a checkpoint before early stopping...')
checkpoint_manager.save(trainer.train_state,
checkpoint_cfg.save.state_transformation_fns)
logging.info('Stopping training loop early since `stop_training` is '
'requested.')
break
inner_num_steps = min(epoch_end_step - host_step, stats_period)
train_summary = trainer.train(
train_iter, inner_num_steps, start_step=host_step)
if not concurrent_metrics:
# Note that we always pass the dictionary of `tasks` -> summary so
# that the actions can be performed without special casing. The only
# caveat is that train would need its own special `key` given no
# `task` will be applied.
trainer.stop_training = run_actions(
trainer_lib.ActionMode.TRAIN, actions, trainer.train_state,
{TRAIN_METRIC_KEY: train_summary.result()})
host_step += inner_num_steps
logging.info('END Train loop.')
except trainer_lib.PreemptionError as e:
logging.info('Saving emergency checkpoint.')
checkpoint_manager.save(trainer.train_state,
checkpoint_cfg.save.state_transformation_fns)
logging.info('Saving emergency checkpoint done.')
raise e
step_offset = host_step - first_step
# Maybe save a checkpoint.
if checkpoint_period and (final_epoch or
step_offset % checkpoint_period == 0):
# Make sure last train step has completed before starting the clock.
train_summary.result()
logging.info('Saving checkpoint.')
checkpoint_tick = time.time()
checkpoint_manager.save(trainer.train_state,
checkpoint_cfg.save.state_transformation_fns)
checkpoint_tock = time.time()
train_metrics.write_scalar('timing/checkpoint_seconds',
checkpoint_tock - checkpoint_tick, host_step)
is_eval_epoch = eval_period and (final_epoch or
step_offset % eval_period == 0)
# Training Evaluation (i.e., with teacher forcing).
if is_eval_epoch and train_eval_datasets:
# Maybe less if final step < period.
first_run = step_offset // eval_period <= 1
_run_training_eval(first_run and not run_eval_before_training)
# Inference Evaluation (i.e., with decoding or scoring).
if evaluator is not None:
_run_inference_eval()
# Wait until computations are done before exiting
logging.info('Finished.')
trainer.close()
if evaluator:
evaluator.close()
multihost_utils.sync_global_devices('complete')
return host_step, trainer.train_state
if __name__ == '__main__':
# pylint: disable=g-import-not-at-top
from absl import app
from absl import flags
import gin
from t5x import gin_utils
# pylint: enable=g-import-not-at-top
FLAGS = flags.FLAGS
jax.config.parse_flags_with_absl()
flags.DEFINE_multi_string(
'gin_file',
default=None,
help='Path to gin configuration file. Multiple paths may be passed and '
'will be imported in the given order, with later configurations '
'overriding earlier ones.')
flags.DEFINE_multi_string(
'gin_bindings', default=[], help='Individual gin bindings.')
flags.DEFINE_list(
'gin_search_paths',
default=['.'],
help='Comma-separated list of gin config path prefixes to be prepended '
'to suffixes given via `--gin_file`. If a file appears in. Only the '
'first prefix that produces a valid path for each suffix will be '
'used.')
flags.DEFINE_string(
'tfds_data_dir', None,
'If set, this directory will be used to store datasets prepared by '
'TensorFlow Datasets that are not available in the public TFDS GCS '
'bucket. Note that this flag overrides the `tfds_data_dir` attribute of '
'all `Task`s.')
flags.DEFINE_list(
'seqio_additional_cache_dirs', [],
'Directories to search for cached Tasks in addition to defaults.')
def main(argv: Sequence[str]):
"""Wrapper for pdb post mortems."""
_main(argv)
def _main(argv: Sequence[str]):
"""True main function."""
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
if FLAGS.tfds_data_dir:
seqio.set_tfds_data_dir_override(FLAGS.tfds_data_dir)
seqio.add_global_cache_dirs(FLAGS.seqio_additional_cache_dirs)
# Create gin-configurable version of `train`.
train_using_gin = gin.configurable(train)
gin_utils.parse_gin_flags(
# User-provided gin paths take precedence if relative paths conflict.
FLAGS.gin_search_paths + _DEFAULT_GIN_SEARCH_PATHS,
FLAGS.gin_file,
FLAGS.gin_bindings)
train_using_gin()
gin_utils.run(main)
|