Spaces:
Build error
Build error
File size: 11,033 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for t5x.partitioning."""
import collections
from absl.testing import absltest
from absl.testing import parameterized
import flax.core
from flax.linen import partitioning as nn_partitioning
import jax
import numpy as np
from t5x import adafactor
from t5x import optimizers
from t5x import partitioning
from t5x import test_utils as ptu
from t5x import train_state
jax.config.parse_flags_with_absl()
mock = absltest.mock
TpuDevice = ptu.TpuDevice
TPUV3_32 = ptu.make_devices(4, 4, 1, 2, kind='TPU v3')
AxisMetadata = nn_partitioning.AxisMetadata
PartitionSpec = partitioning.PartitionSpec
class PartitioningTest(absltest.TestCase):
@mock.patch('jax.host_count')
@mock.patch('jax.local_device_count')
def test_bounds_from_last_device(self, local_device_count, host_count):
last_device = mock.Mock(coords=(3, 3, 3), core_on_chip=1)
tpu_bounds = partitioning.bounds_from_last_device(last_device)
self.assertEqual(tpu_bounds, (4, 4, 4, 2))
last_device = mock.Mock(spec=[])
host_count.return_value = 1
local_device_count.return_value = 4
non_tpu_bounds = partitioning.bounds_from_last_device(last_device)
self.assertEqual(non_tpu_bounds, (1, 4))
@mock.patch('jax.local_device_count')
def test_get_coords(self, local_device_count):
device = mock.Mock(coords=(1, 0, 1), core_on_chip=1)
coords = partitioning.get_coords(device)
self.assertEqual(coords, (1, 0, 1, 1))
device = mock.Mock(spec=['process_index', 'id'])
device.process_index = 1
device.id = 9
local_device_count.return_value = 8
coords = partitioning.get_coords(device)
self.assertEqual(coords, (1, 1))
@mock.patch('jax.local_devices')
@mock.patch('jax.devices')
@mock.patch('jax._src.lib.xla_bridge.process_index')
def test_default_mesh(self, process_index_fn, devices_fn, local_devices_fn):
devices_fn.return_value = TPUV3_32
local_devices_fn.return_value = [
d for d in TPUV3_32 if d.process_index == 0
]
process_index_fn.return_value = 0
global_mesh = partitioning.default_mesh(4)
self.assertEqual(global_mesh.axis_names, ('data', 'model'))
self.assertEqual(global_mesh.shape,
collections.OrderedDict((('data', 8), ('model', 4))))
self.assertEqual(global_mesh.size, 32)
for process_index in (0, 1, 2, 3):
process_index_fn.return_value = process_index
local_mesh = global_mesh.local_mesh
self.assertEqual(local_mesh.axis_names, ('data', 'model'))
self.assertEqual(local_mesh.shape,
collections.OrderedDict((('data', 2), ('model', 4))))
self.assertEqual(local_mesh.size, 8)
process_index_fn.return_value = 0
local_mesh = global_mesh.local_mesh
lds = np.array([
[
TpuDevice(id=0, process_index=0, coords=(0, 0, 0), core_on_chip=0),
TpuDevice(id=1, process_index=0, coords=(0, 0, 0), core_on_chip=1),
TpuDevice(id=2, process_index=0, coords=(1, 0, 0), core_on_chip=0),
TpuDevice(id=3, process_index=0, coords=(1, 0, 0), core_on_chip=1)
],
[
TpuDevice(id=8, process_index=0, coords=(0, 1, 0), core_on_chip=0),
TpuDevice(id=9, process_index=0, coords=(0, 1, 0), core_on_chip=1),
TpuDevice(id=10, process_index=0, coords=(1, 1, 0), core_on_chip=0),
TpuDevice(id=11, process_index=0, coords=(1, 1, 0), core_on_chip=1)
]
],
dtype=object)
np.testing.assert_array_equal(local_mesh.devices, lds)
@mock.patch('jax.local_devices')
@mock.patch('jax.devices')
@mock.patch('jax._src.lib.xla_bridge.process_index')
def test_local_chunker(self, process_index_fn, devices_fn, local_devices_fn):
devices_fn.return_value = TPUV3_32
local_devices_fn.return_value = [
d for d in TPUV3_32 if d.process_index == 0
]
process_index_fn.return_value = 0
global_mesh = partitioning.default_mesh(4)
local_chunker = partitioning.LocalChunker(global_mesh)
self.assertEqual(local_chunker.num_chunks['data'], 4)
self.assertEqual(local_chunker.num_chunks['model'], 1)
# Derive the chunk order along the first 'data' dim for testing.
host_ordering = []
for d in global_mesh.devices[:, 0]:
if d.process_index not in host_ordering:
host_ordering.append(d.process_index)
process_index_to_data_pos = {
process_index: idx for idx, process_index in enumerate(host_ordering)
}
for process_indexx in (0, 1, 2, 3):
process_index_fn.return_value = process_indexx
global_mesh = partitioning.default_mesh(4)
local_chunker = partitioning.LocalChunker(global_mesh)
# get expected chunk for 'data' axis.
expected_chunk = process_index_to_data_pos[process_indexx]
self.assertEqual(local_chunker.chunk_ids['data'], expected_chunk)
self.assertEqual(local_chunker.chunk_ids['model'], 0)
# Sharded along both axes.
local_chunk_info = local_chunker.get_local_chunk_info((128, 16),
['data', 'model'])
self.assertEqual(local_chunk_info.replica_id, 0)
self.assertEqual(local_chunk_info.slice,
(slice(32 * expected_chunk, 32 *
(expected_chunk + 1)), slice(0, 16)))
# Replicated across first axis.
local_chunk_info = local_chunker.get_local_chunk_info((128, 16),
[None, 'model'])
self.assertEqual(local_chunk_info.replica_id, expected_chunk)
self.assertEqual(local_chunk_info.slice, (slice(None), slice(0, 16)))
class ModelBasedPartitionerTest(parameterized.TestCase):
def get_axes_spec(self, partitioner, factored, momentum):
opt_def = adafactor.Adafactor(
learning_rate=0.1,
factored=factored,
min_dim_size_to_factor=8,
beta1=0.1 if momentum else None,
logical_factor_rules={
'batch': adafactor.FactorDim.NONE,
'embed': adafactor.FactorDim.ROW,
'vocab': adafactor.FactorDim.COLUMN,
'mlp': adafactor.FactorDim.COLUMN,
})
state = train_state.FlaxOptimTrainState.create(
opt_def,
flax.core.freeze({
'params': {
'logits_dense': np.ones((16, 16), np.float32),
'mlp': {
'wo': {
'kernel': np.ones((32, 16), np.float32)
}
}
},
'params_axes': {
'logits_dense_axes': AxisMetadata(names=('vocab', 'embed')),
'mlp': {
'wo': {
'kernel_axes': AxisMetadata(names=('embed', 'mlp'))
}
}
}
}))
return partitioner.get_mesh_axes(state).state_dict()
def get_expected_axes_spec(self,
spec_0,
spec_1,
kernel_spec=PartitionSpec(None, 'model')):
return train_state.FlaxOptimTrainState(
optimizers.Optimizer(
# opt_def,
adafactor.Adafactor(0.1), # opt_def not compared.
state=optimizers.OptimizerState(
step=None,
param_states={
'logits_dense': spec_0,
'mlp': {
'wo': {
'kernel': spec_1
}
}
}),
target={
'logits_dense': PartitionSpec('model', None),
'mlp': {
'wo': {
'kernel': kernel_spec
}
}
})).state_dict()
def test_get_mesh_axes(self):
partitioner = partitioning.PjitPartitioner(
num_partitions=1,
logical_axis_rules=(('batch', 'data'), ('embed', None),
('vocab', 'model'), ('mlp', 'model')))
p0_spec = PartitionSpec('model', None)
p1_spec = PartitionSpec(None, 'model')
# Test quadrant of conditions: factored or not / momentum or not.
axes_spec = self.get_axes_spec(partitioner, factored=True, momentum=False)
expected_axes_spec = self.get_expected_axes_spec(
adafactor._AdafactorParamState(m=None, v=None, v_col=None, v_row=None),
adafactor._AdafactorParamState(m=None, v=None, v_col=None, v_row=None))
jax.tree_multimap(self.assertEqual, axes_spec, expected_axes_spec)
axes_spec = self.get_axes_spec(partitioner, factored=True, momentum=True)
expected_axes_spec = self.get_expected_axes_spec(
adafactor._AdafactorParamState(
m=p0_spec, v=None, v_col=None, v_row=None),
adafactor._AdafactorParamState(
m=p1_spec, v=None, v_col=None, v_row=None))
jax.tree_multimap(self.assertEqual, axes_spec, expected_axes_spec)
axes_spec = self.get_axes_spec(partitioner, factored=False, momentum=True)
expected_axes_spec = self.get_expected_axes_spec(
adafactor._AdafactorParamState(
m=p0_spec, v=p0_spec, v_col=None, v_row=None),
adafactor._AdafactorParamState(
m=p1_spec, v=p1_spec, v_col=None, v_row=None))
jax.tree_multimap(self.assertEqual, axes_spec, expected_axes_spec)
axes_spec = self.get_axes_spec(partitioner, factored=False, momentum=False)
expected_axes_spec = self.get_expected_axes_spec(
adafactor._AdafactorParamState(
m=None, v=p0_spec, v_col=None, v_row=None),
adafactor._AdafactorParamState(
m=None, v=p1_spec, v_col=None, v_row=None))
jax.tree_multimap(self.assertEqual, axes_spec, expected_axes_spec)
@parameterized.product(activation_dims=(1, 2), param_dims=(1, 2))
def test_standard_logical_axis_rules(self, activation_dims, param_dims):
default_rules = partitioning.standard_logical_axis_rules(
activation_dims, param_dims, additional_rules=None)
custom_rules = (('my-new-axis', 'data'), ('another-axis', None),
('another-one', 'model'))
new_rules = partitioning.standard_logical_axis_rules(
activation_dims, param_dims, additional_rules=custom_rules)
self.assertEqual(new_rules[:len(default_rules)], default_rules)
self.assertEqual(new_rules[len(default_rules):], list(custom_rules))
if __name__ == '__main__':
absltest.main()
|