Spaces:
Build error
Build error
File size: 68,773 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for t5x.checkpoints."""
import concurrent.futures
import functools
import itertools
import os
from typing import Any, Mapping
from absl import flags
from absl.testing import absltest
from absl.testing import parameterized
from flax import serialization
from flax import traverse_util
from flax.metrics import tensorboard
import jax
import jax.numpy as jnp
import numpy as np
from t5x import checkpoints
from t5x import optimizers
from t5x import partitioning
from t5x import state_utils
from t5x import test_utils
from t5x import train_state as train_state_lib
from t5x import utils
import tensorflow as tf
from tensorflow.io import gfile
import tensorstore as ts
# Parse absl flags test_srcdir and test_tmpdir.
jax.config.parse_flags_with_absl()
mock = absltest.mock
PartitionSpec = partitioning.PartitionSpec
FLAGS = flags.FLAGS
LazyArray = checkpoints.LazyArray
TESTDATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'testdata')
FlaxOptimTrainState = train_state_lib.FlaxOptimTrainState
def make_train_state(
*,
step: int,
params: Mapping[str, Any],
param_states: Mapping[str, Any],
flax_optimizer_def: optimizers.OptimizerDefType = optimizers.sgd(0.1)
) -> FlaxOptimTrainState:
"""Helper to construct a train state for testing."""
optimizer = optimizers.Optimizer(
flax_optimizer_def,
state=optimizers.OptimizerState(step=step, param_states=param_states),
target=params)
return FlaxOptimTrainState(optimizer)
def make_train_state_multi_optimizer(params: Mapping[str, Any],
param_states: Mapping[str, Any],
step: int) -> FlaxOptimTrainState:
"""Helper to construct a train state with multi optimizer for testing."""
optimizer = optimizers.Optimizer(
optimizers.MultiOptimizer([
(traverse_util.ModelParamTraversal(
lambda path, _: 'kernel' not in path), optimizers.sgd(0.1)),
]),
state=optimizers.OptimizerState(step=step, param_states=param_states),
target=params)
return FlaxOptimTrainState(optimizer)
def update_train_state_step(train_state: FlaxOptimTrainState,
step: int) -> FlaxOptimTrainState:
"""Helper to update the step inside TrainState."""
state_dict = train_state.state_dict()
state_dict['state']['step'] = step
return train_state.restore_state(state_dict)
class CheckpointChunkShapeTest(absltest.TestCase):
def test_simple(self):
self.assertEqual([4096, 4096],
checkpoints._choose_chunk_shape([4096, 4096], 4096 * 4096))
self.assertEqual([4096, 4096],
checkpoints._choose_chunk_shape([8192, 8192], 4096 * 4096))
self.assertEqual([4096, 2731],
checkpoints._choose_chunk_shape([8192, 8193], 4096 * 4096))
self.assertEqual([4096], checkpoints._choose_chunk_shape([8192], 4096))
self.assertEqual([2731], checkpoints._choose_chunk_shape([8193], 4096))
class CheckpointsTest(parameterized.TestCase):
def setUp(self):
super().setUp()
self.train_state = make_train_state(
step=np.int32(42),
params={
'bias': np.arange(4, dtype=jnp.bfloat16).reshape((4, 1)),
'kernel': np.arange(32, dtype=np.float32).reshape((2, 16))
},
param_states={
'bias': np.int32(1),
'kernel': np.array([1, 2], np.uint8)
})
self.train_state_multi_optimizer = make_train_state_multi_optimizer(
step=np.int32(42),
params={
'bias': np.arange(4, dtype=jnp.bfloat16).reshape((4, 1)),
'kernel': np.arange(32, dtype=np.float32).reshape((2, 16))
},
param_states={
'bias': np.int32(1),
'kernel': None
})
self.default_mesh_axes = make_train_state(
step=None,
params={
'bias': PartitionSpec('model', None),
'kernel': PartitionSpec(None, 'model')
},
param_states={
'bias': None,
'kernel': None
})
self.ds = tf.data.Dataset.range(1024)
self.checkpoints_dir = self.create_tempdir()
self.tmp_dir = self.checkpoints_dir.full_path
fake_checkpoints = self.create_tempdir()
self.fake_checkpoints = fake_checkpoints.full_path
self.steps = (0, 100, 200)
for step in self.steps:
step_dir = fake_checkpoints.mkdir(f'checkpoint_{step}')
step_dir.create_file('checkpoint')
@mock.patch('jax._src.lib.xla_bridge.process_index')
@mock.patch('jax.devices')
@mock.patch('jax.local_devices')
def get_partitioner(self,
process_index,
host_count,
num_partitions,
local_devices_fn,
devices_fn,
process_index_fn,
params_on_devices: bool = True,
mesh_axes=None):
host_count_to_layout = {
1: (2, 2, 1, 2),
2: (4, 2, 1, 2),
4: (4, 4, 1, 2),
8: (4, 8, 1, 2),
16: (8, 8, 1, 2),
32: (8, 16, 1, 2)
}
devices = test_utils.make_devices(*host_count_to_layout[host_count])
devices_fn.return_value = devices
local_devices = [d for d in devices if d.process_index == 0]
local_devices_fn.return_value = local_devices
process_index_fn.return_value = process_index
num_partitions_to_mps = {
1: (1, 1, 1, 1),
2: (1, 1, 1, 2),
4: (2, 1, 1, 2),
16: (4, 2, 1, 2)
}
mesh = partitioning.get_mesh(
model_parallel_submesh=num_partitions_to_mps[num_partitions],
input_devices=devices,
input_local_devices=local_devices)
mesh_axes = mesh_axes or self.default_mesh_axes
local_chunker = partitioning.LocalChunker(mesh)
class TestPartitioner(partitioning.BasePartitioner):
def __init__(self):
self.move_params_to_devices_calls = 0
super().__init__(
num_partitions, None, params_on_devices=params_on_devices)
@property
def _local_chunker(self):
return local_chunker
@property
def _mesh(self):
return mesh
def partition(self,
fn,
in_axis_resources,
out_axis_resources,
static_argnums=(),
donate_argnums=()):
raise NotImplementedError
def compile(self, partitioned_fn, *args):
raise NotImplementedError
def move_params_to_devices(self, train_state, train_state_axes):
assert params_on_devices
return train_state
def get_mesh_axes(self, train_state):
return mesh_axes
return TestPartitioner()
# pylint:disable=no-value-for-parameter
@mock.patch(
'jax.experimental.multihost_utils.sync_global_devices', return_value=None)
@mock.patch('time.time', return_value=0)
@mock.patch('jax.host_count')
@mock.patch('jax.process_index')
def call_host_checkpointer(self,
process_index,
host_count,
partitioner,
fn,
save_dtype,
ds_iter,
mock_process_index,
mock_host_count,
unused_mock_host_time,
unused_mock_sync_devices,
restore_dtype=np.float32):
mock_process_index.return_value = process_index
mock_host_count.return_value = host_count
checkpointer = checkpoints.Checkpointer(
self.train_state,
partitioner,
self.tmp_dir,
ds_iter,
save_dtype=save_dtype,
restore_dtype=restore_dtype)
return fn(checkpointer)
# pylint:disable=no-value-for-parameter
@mock.patch(
'jax.experimental.multihost_utils.sync_global_devices', return_value=None)
@mock.patch('time.time', return_value=0)
@mock.patch('jax.host_count')
@mock.patch('jax.process_index')
def call_host_multioptimizer_checkpointer(self, process_index, host_count,
partitioner, fn, save_dtype,
ds_iter, mock_process_index,
mock_host_count,
unused_mock_host_time,
unused_mock_sync_devices):
mock_process_index.return_value = process_index
mock_host_count.return_value = host_count
checkpointer = checkpoints.Checkpointer(
self.train_state_multi_optimizer,
partitioner,
self.tmp_dir,
ds_iter,
save_dtype=save_dtype)
return fn(checkpointer)
def test_get_parameter_infos(self):
train_state = make_train_state(
params={
'bias': np.ones((8192, 8192), np.float32),
'kernel': np.ones((2, 16), np.float32)
},
param_states={
'bias': np.int32(1),
'kernel': np.array([1, 2])
},
step=np.int32(42))
# host 3 of a 4x4 with mesh 'model' dim == 16
partitioner = self.get_partitioner(3, 4, 16)
checkpointer = checkpoints.Checkpointer(train_state, partitioner,
self.tmp_dir)
expected_parameter_infos = {
'state': {
'step':
checkpoints._ParameterInfo(
name='state/step', shape=(), ts_spec=None, local_chunk_info=None, axes=None),
'param_states': {
'bias':
checkpoints._ParameterInfo(
name='state/param_states/bias',
shape=(),
ts_spec=None,
local_chunk_info=None, axes=None),
'kernel':
checkpoints._ParameterInfo(
name='state/param_states/kernel',
shape=(2,),
ts_spec=None,
local_chunk_info=None, axes=None)
}
},
'target': {
'bias':
checkpoints._ParameterInfo(
name='target/bias',
shape=(8192, 8192),
ts_spec=ts.Spec({
'driver': 'zarr',
'dtype': 'float32',
'kvstore': { # pylint:disable=duplicate-key
'driver': 'file',
'path': 'target.bias',
},
'metadata': {
'chunks': [4096, 4096],
'compressor': {
'id': 'gzip'
},
'shape': [8192, 8192],
},
}),
local_chunk_info=partitioning.LocalChunkInfo(
slice=(slice(4096, 8192, None), slice(None, None,
None)),
replica_id=1), axes=PartitionSpec('model', None)),
'kernel':
checkpoints._ParameterInfo(
name='target/kernel',
shape=(2, 16),
ts_spec=ts.Spec({
'driver': 'zarr',
'dtype': 'float32',
'kvstore': { # pylint:disable=duplicate-key
'driver': 'file',
'path': 'target.kernel',
},
'metadata': {
'chunks': [2, 8],
'compressor': {
'id': 'gzip'
},
'shape': [2, 16],
},
}),
local_chunk_info=partitioning.LocalChunkInfo(
slice=(slice(None, None, None), slice(8, 16, None)),
replica_id=1), axes=PartitionSpec(None, 'model'))
}
} # pyformat: disable
jax.tree_multimap(self.assertEqual, checkpointer._get_parameter_infos(),
expected_parameter_infos)
def test_get_multioptimizer_parameter_infos(self):
train_state = make_train_state(
step=np.int32(42),
params={
'bias': np.ones((8192, 8192), jnp.bfloat16),
'kernel': np.ones((2, 16), np.float32)
},
param_states={
'bias': np.int32(1),
# The parameter state for Kernel is `None` as if we have a
# multioptimizer that is not updating this parameter.
'kernel': None
})
# host 3 of a 4x4 with mesh 'model' dim == 16
partitioner = self.get_partitioner(3, 4, 16)
checkpointer = checkpoints.Checkpointer(train_state, partitioner,
self.tmp_dir)
kernel_state_info = (
checkpointer._get_parameter_infos()['state']['param_states']['kernel'])
self.assertIsNone(kernel_state_info)
def test_all_steps(self):
partitioner = self.get_partitioner(0, 1, 1)
checkpointer = self.call_host_checkpointer(0, 1, partitioner, lambda c: c,
np.float32, None)
self.assertIsNone(checkpointer.latest_step())
for step in ['0', '42', '10', '999.tmp-0', '100']:
d = os.path.join(checkpointer.checkpoints_dir, f'checkpoint_{step}')
gfile.makedirs(d)
ckpt = os.path.join(d, 'checkpoint')
with gfile.GFile(ckpt, 'w') as f:
f.write('')
self.assertSequenceEqual(
checkpoints.all_steps(checkpointer.checkpoints_dir + '/'),
[0, 10, 42, 100])
def test_all_latest_step(self):
partitioner = self.get_partitioner(0, 1, 1)
checkpointer = self.call_host_checkpointer(0, 1, partitioner, lambda c: c,
np.float32, None)
self.assertIsNone(checkpointer.latest_step())
for step in ['0', '42', '10', '999.tmp-0', '100']:
d = os.path.join(checkpointer.checkpoints_dir, f'checkpoint_{step}')
gfile.makedirs(d)
ckpt = os.path.join(d, 'checkpoint')
with gfile.GFile(ckpt, 'w') as f:
f.write('')
self.assertSequenceEqual(checkpointer.all_steps(), [0, 10, 42, 100])
self.assertEqual(checkpointer.latest_step(), 100)
# Remove checkpoint file for step 100 (but leave directory).
gfile.remove(ckpt)
self.assertSequenceEqual(checkpointer.all_steps(), [0, 10, 42])
self.assertEqual(checkpointer.latest_step(), 42)
def test_all_latest_step_public(self):
self.assertIsNone(checkpoints.latest_step(self.tmp_dir))
for step in ['0', '42', '10', '999.tmp-0', '100']:
d = os.path.join(self.tmp_dir, f'checkpoint_{step}')
gfile.makedirs(d)
ckpt = os.path.join(d, 'checkpoint')
with gfile.GFile(ckpt, 'w') as f:
f.write('')
self.assertSequenceEqual(
checkpoints.all_steps(self.tmp_dir), [0, 10, 42, 100])
self.assertEqual(checkpoints.latest_step(self.tmp_dir), 100)
# Remove checkpoint file for step 100 (but leave directory).
gfile.remove(ckpt)
self.assertSequenceEqual(checkpoints.all_steps(self.tmp_dir), [0, 10, 42])
self.assertEqual(checkpoints.latest_step(self.tmp_dir), 42)
def validate_restore(self,
host_count,
num_partitions,
step=42,
checkpoint_dataset=False,
expected_restore_dtype=np.float32,
lazy_parameters=False,
disable_partitioning=False):
params = self.train_state.params
param_states = self.train_state.param_states
for i in range(host_count):
partitioner = self.get_partitioner(
i,
host_count,
num_partitions,
params_on_devices=not lazy_parameters,
mesh_axes=jax.tree_map(lambda x: None, self.default_mesh_axes)
if disable_partitioning else None)
ds_shard_id = partitioner.get_data_layout().shard_id
bias_slice = partitioner.get_local_chunk_info(params['bias'].shape,
('model', None)).slice
kernel_slice = partitioner.get_local_chunk_info(params['kernel'].shape,
(None, 'model')).slice
ds_iter = iter(self.ds)
actual_train_state = self.call_host_checkpointer(
i,
host_count,
partitioner,
lambda c: c.restore( # pylint: disable=g-long-lambda
step=step,
lazy_parameters=lazy_parameters),
np.float32,
ds_iter if checkpoint_dataset else None,
restore_dtype=expected_restore_dtype)
if lazy_parameters:
actual_train_state = jax.tree_map(lambda x: x.get(), actual_train_state)
self.assertEqual(actual_train_state._optimizer.optimizer_def,
self.train_state._optimizer.optimizer_def)
self.assertEqual(actual_train_state.step, step)
self.assertEqual(actual_train_state.step.dtype, np.int32)
self.assertEqual(actual_train_state._optimizer.state.step.dtype, np.int32)
jax.tree_multimap(np.testing.assert_array_equal,
actual_train_state.param_states, param_states)
self.assertEqual(actual_train_state.param_states['kernel'].dtype,
np.uint8)
self.assertSameElements(actual_train_state.params, ('bias', 'kernel'))
self.assertTrue(
all(
jax.tree_leaves(
jax.tree_map(lambda x: x.dtype == expected_restore_dtype,
actual_train_state.params))))
np.testing.assert_equal(actual_train_state.params['bias'],
params['bias'][bias_slice])
np.testing.assert_equal(actual_train_state.params['kernel'],
params['kernel'][kernel_slice])
if checkpoint_dataset:
# The next value from the restored iterator should equal the
# replica set id.
self.assertEqual(next(ds_iter).numpy(), ds_shard_id)
def validate_multioptimizer_restore(self,
host_count,
num_partitions,
step=42,
checkpoint_dataset=False,
expected_restore_dtype=np.float32):
params = self.train_state_multi_optimizer.params
param_states = self.train_state_multi_optimizer.param_states
for i in range(host_count):
partitioner = self.get_partitioner(i, host_count, num_partitions)
ds_shard_id = partitioner.get_data_layout().shard_id
bias_slice = partitioner.get_local_chunk_info(params['bias'].shape,
('model', None)).slice
kernel_slice = partitioner.get_local_chunk_info(params['kernel'].shape,
(None, 'model')).slice
ds_iter = iter(self.ds)
actual_train_state = self.call_host_multioptimizer_checkpointer(
i, host_count, partitioner, lambda c: c.restore(step=step),
np.float32, ds_iter if checkpoint_dataset else None)
actual_optimizer = actual_train_state._optimizer # pylint: disable=protected-access
actual_step = actual_train_state.step
actual_params = actual_train_state.params
actual_param_states = actual_train_state.param_states
self.assertEqual(
actual_optimizer.optimizer_def,
self.train_state_multi_optimizer._optimizer.optimizer_def)
self.assertEqual(actual_optimizer.state.step.dtype, np.int32)
jax.tree_map(lambda x: self.assertEqual(x.dtype, expected_restore_dtype),
actual_optimizer.target)
self.assertEqual(actual_step, step)
self.assertEqual(actual_step.dtype, np.int32)
jax.tree_multimap(np.testing.assert_array_equal, actual_param_states,
param_states)
self.assertSameElements(actual_params, ('bias', 'kernel'))
self.assertTrue(
all(
jax.tree_leaves(
jax.tree_map(lambda x: x.dtype == expected_restore_dtype,
actual_params))))
np.testing.assert_equal(actual_params['bias'], params['bias'][bias_slice])
np.testing.assert_equal(actual_params['kernel'],
params['kernel'][kernel_slice])
if checkpoint_dataset:
# The next value from the restored iterator should equal the
# replica set id.
self.assertEqual(next(ds_iter).numpy(), ds_shard_id)
def validate_save(self,
host_count,
num_partitions,
step=42,
save_dtype=np.float32,
checkpoint_dataset=False,
multi_optimizer=False,
disable_partitioning=False):
if multi_optimizer:
params = self.train_state_multi_optimizer.params
param_states = self.train_state_multi_optimizer.param_states
optimizer_def = self.train_state_multi_optimizer._optimizer.optimizer_def
else:
params = self.train_state.params
param_states = self.train_state.param_states
optimizer_def = self.train_state._optimizer.optimizer_def
# Update these on each save.
step = np.int32(step)
expected_bias = np.zeros((4, 1), save_dtype)
expected_kernel = np.zeros((2, 16), save_dtype)
bias_tspec = {
'driver': 'zarr',
'kvstore': {
'driver': 'file',
'path': f'{self.tmp_dir}/checkpoint_{step}.tmp-0/target.bias',
}
}
kernel_tspec = {
'driver': 'zarr',
'kvstore': {
'driver': 'file',
'path': f'{self.tmp_dir}/checkpoint_{step}.tmp-0/target.kernel',
}
}
# Test save.
# Each host sets its partition to its host number + 1.
# Go in reverse since host 0 renames the directory.
for i in reversed(range(host_count)):
partitioner = self.get_partitioner(
i,
host_count,
num_partitions,
mesh_axes=jax.tree_map(lambda x: None, self.default_mesh_axes)
if disable_partitioning else None)
data_layout = partitioner.get_data_layout()
num_ds_shards = data_layout.num_shards
ds_shard_id = data_layout.shard_id
chunk_id_for_shard = partitioner.get_local_chunk_info(
jnp.ones((num_ds_shards,)), ['data']).replica_id
bias_chunk = partitioner.get_local_chunk_info(params['bias'].shape,
('model', None))
kernel_chunk = partitioner.get_local_chunk_info(params['kernel'].shape,
(None, 'model'))
ds_iter = iter(self.ds)
# pylint:disable=cell-var-from-loop
def _save_ckpt(checkpointer):
# Set the checkpoint so that the next value on restore will be the
# replica set id.
for _ in range(ds_shard_id):
next(ds_iter)
train_state = make_train_state(
step=step,
params={
'bias': params['bias'][bias_chunk.slice],
'kernel': params['kernel'][kernel_chunk.slice]
},
param_states=param_states,
flax_optimizer_def=optimizer_def)
checkpointer.save(train_state)
# pylint:enable=cell-var-from-loop
self.call_host_checkpointer(i, host_count, partitioner, _save_ckpt,
save_dtype,
ds_iter if checkpoint_dataset else None)
if disable_partitioning:
continue
# Read the current TensorStore.
if i == 0:
# Host 0 moves the files.
bias_tspec['kvstore']['path'] = (
bias_tspec['kvstore']['path'].replace('.tmp-0', ''))
kernel_tspec['kvstore']['path'] = (
kernel_tspec['kvstore']['path'].replace('.tmp-0', ''))
if checkpoint_dataset:
ckpt_dir = f'{self.tmp_dir}/checkpoint_{step}'
if i != 0:
ckpt_dir += '.tmp-0'
ds_ckpt_glob = gfile.glob(ckpt_dir + '/train_ds-' +
f'{ds_shard_id:03}-of-{num_ds_shards:03}*')
if chunk_id_for_shard == 0:
self.assertLen(ds_ckpt_glob, 2)
else:
self.assertEmpty(ds_ckpt_glob)
# only replica_id=0 is saved for each array chunk
if bias_chunk.replica_id == 0:
current_bias = ts.open(bias_tspec).result().read().result().view(
save_dtype)
expected_bias[bias_chunk.slice] = (params['bias'][bias_chunk.slice])
np.testing.assert_equal(current_bias, expected_bias)
if kernel_chunk.replica_id == 0:
current_kernel = ts.open(kernel_tspec).result().read().result().view(
save_dtype)
expected_kernel[kernel_chunk.slice] = (
params['kernel'][kernel_chunk.slice])
np.testing.assert_equal(current_kernel, expected_kernel)
with gfile.GFile(f'{self.tmp_dir}/checkpoint_{step}/checkpoint', 'rb') as f:
ckpt_contents = serialization.msgpack_restore(f.read())
self.assertEqual(ckpt_contents['version'], checkpoints.VERSION)
jax.tree_multimap(np.testing.assert_allclose,
ckpt_contents['optimizer']['state']['param_states'],
param_states)
self.assertEqual(ckpt_contents['optimizer']['state']['step'].dtype,
np.int32)
if disable_partitioning:
# Parameters should also be in the msgpack checkpoint file.
jax.tree_multimap(
np.testing.assert_allclose, ckpt_contents['optimizer']['target'],
jax.tree_map(lambda arr: arr.astype(save_dtype), params))
# Jax tree maps ignore Nones so actually check this value is None
if multi_optimizer:
self.assertIsNone(
ckpt_contents['optimizer']['state']['param_states']['kernel'])
# (host_count, num_partitions)
TOPOLOGIES = [
(1, 1), # 1 host, 1 partition
(1, 2), # 1 host, 2 partitions
(2, 1), # 2 hosts, 1 partition
(2, 2), # 2 hosts, 2 partitions
(4, 4), # 4 hosts, 4 partitions
(4, 1), # 4 hosts, 1 partition
(4, 2), # 4 hosts, 2 partitions
(8, 2), # 8 hosts, 2 partitions
]
DTYPES = [
jnp.int32, jnp.float32, jnp.bfloat16, jnp.uint32, jnp.int64, jnp.float64
]
@parameterized.parameters(itertools.product(TOPOLOGIES, TOPOLOGIES))
def test_save_restore(self, save_topology, restore_topology):
self.validate_save(*save_topology)
self.validate_restore(*restore_topology)
@parameterized.parameters(itertools.product(TOPOLOGIES, TOPOLOGIES))
def test_save_restore_lazy(self, save_topology, restore_topology):
self.validate_save(*save_topology)
self.validate_restore(*restore_topology, lazy_parameters=True)
@parameterized.parameters(itertools.product(TOPOLOGIES, TOPOLOGIES))
def test_save_multioptimizer_restore(self, save_topology, restore_topology):
self.validate_save(*save_topology)
self.validate_multioptimizer_restore(*restore_topology)
@parameterized.parameters(itertools.product(TOPOLOGIES, TOPOLOGIES))
def test_multioptimizer_save_multioptimizer_restore(self, save_topology,
restore_topology):
self.validate_save(*save_topology, multi_optimizer=True)
self.validate_multioptimizer_restore(*restore_topology)
def test_load_t5x_checkpoint(self):
self.validate_save(1, 1)
ckpt = checkpoints.load_t5x_checkpoint(self.tmp_dir)
jax.tree_multimap(np.testing.assert_array_equal,
self.train_state.state_dict(), ckpt)
def test_load_t5x_checkpoint_of_multioptimizer(self):
self.validate_save(1, 1, multi_optimizer=True)
ckpt = checkpoints.load_t5x_checkpoint(self.tmp_dir)
jax.tree_multimap(np.testing.assert_array_equal,
self.train_state_multi_optimizer.state_dict(), ckpt)
# Jax tree maps ignore Nones so actually check this value is None
self.assertIsNone(ckpt['state']['param_states']['kernel'])
def test_load_t5x_checkpoint_lazy(self):
self.validate_save(1, 1)
ckpt = checkpoints.load_t5x_checkpoint(self.tmp_dir)
lazy_ckpt = checkpoints.load_t5x_checkpoint(
self.tmp_dir, lazy_parameters=True)
lazy_loaded_ckpt = jax.tree_map(lambda x: x.get(), lazy_ckpt)
jax.tree_multimap(np.testing.assert_array_equal, ckpt, lazy_loaded_ckpt)
def test_load_t5x_checkpoint_of_multioptimizer_lazy(self):
self.validate_save(1, 1, multi_optimizer=True)
ckpt = checkpoints.load_t5x_checkpoint(self.tmp_dir)
lazy_ckpt = checkpoints.load_t5x_checkpoint(
self.tmp_dir, lazy_parameters=True)
lazy_loaded_ckpt = jax.tree_map(lambda x: x.get(), lazy_ckpt)
jax.tree_multimap(np.testing.assert_array_equal, ckpt, lazy_loaded_ckpt)
# Jax tree maps ignore Nones so actually check this value is None
self.assertIsNone(lazy_loaded_ckpt['state']['param_states']['kernel'])
@parameterized.parameters(TOPOLOGIES)
def test_save_restore_dataset(self, *topology):
# Note that we must use the same number of replica sets on save/restore.
self.validate_save(*topology, checkpoint_dataset=True)
self.validate_restore(*topology, checkpoint_dataset=True)
@parameterized.parameters(itertools.product(DTYPES, DTYPES))
def test_save_as_type(self, save_dtype, restore_dtype):
self.validate_save(1, 1, save_dtype=save_dtype)
self.validate_restore(1, 1, expected_restore_dtype=restore_dtype)
@parameterized.parameters(TOPOLOGIES)
def test_reload_wrong_shape(self, *restore_topology):
self.validate_save(1, 1)
self.train_state = make_train_state(
step=np.int32(42),
params={
'bias': np.arange(4, dtype=jnp.bfloat16).reshape((4, 1)),
'kernel': np.arange(32, dtype=np.float32).reshape((4, 8))
},
param_states={
'bias': np.int32(1),
'kernel': np.array([1, 2])
})
with self.assertRaisesWithLiteralMatch(
ValueError,
'Shape of `target/kernel` in checkpoint (2, 16) does not match '
'expected (4, 8).'):
self.validate_restore(*restore_topology)
@parameterized.parameters(TOPOLOGIES)
def test_save_partitioned_restore_non_partitioned(self, *restore_topology):
# Save with default partitioning.
self.validate_save(2, 2)
# Restore without partitioning.
self.validate_restore(*restore_topology, disable_partitioning=True)
@parameterized.parameters(TOPOLOGIES)
def test_save_non_partitioned_restore_partitioned(self, *restore_topology):
# Save without partitioning.
self.validate_save(2, 1, disable_partitioning=True)
# Restore with partitioning.
self.validate_restore(*restore_topology)
@parameterized.parameters(TOPOLOGIES)
def test_save_non_partitioned_restore_non_partitioned(self,
*restore_topology):
# Save without partitioning.
self.validate_save(2, 1, disable_partitioning=True)
# Restore with partitioning.
self.validate_restore(*restore_topology, disable_partitioning=True)
@mock.patch('time.time', return_value=0)
def test_keep(self, unused_mock_time):
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
checkpointer = checkpoints.Checkpointer(
train_state, no_partitions_partitioner, self.tmp_dir, keep=2)
checkpointer.save(update_train_state_step(train_state, 42))
self.assertSequenceEqual(checkpointer.all_steps(), [42])
checkpointer.save(update_train_state_step(train_state, 43))
self.assertSequenceEqual(checkpointer.all_steps(), [42, 43])
checkpointer.save(update_train_state_step(train_state, 44))
self.assertSequenceEqual(checkpointer.all_steps(), [43, 44])
checkpointer.keep = 1
checkpointer.save(update_train_state_step(train_state, 45))
self.assertSequenceEqual(checkpointer.all_steps(), [45])
checkpointer.keep = 3
checkpointer.save(update_train_state_step(train_state, 46))
self.assertSequenceEqual(checkpointer.all_steps(), [45, 46])
@mock.patch('time.time', return_value=0)
def test_keep_pinned(self, unused_mock_time):
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
checkpointer = checkpoints.Checkpointer(
train_state, no_partitions_partitioner, self.tmp_dir, keep=1)
checkpointer.save(update_train_state_step(train_state, 42))
self.assertSequenceEqual(checkpointer.all_steps(), [42])
# Mark the checkpoint as pinned by creating the ALWAYS KEEP file.
ckpt_dir = self.checkpoints_dir.mkdir(f'checkpoint_{42}')
ckpt_dir.create_file('PINNED')
checkpointer.save(update_train_state_step(train_state, 43))
# Assert both the pinned and the most recent checkpoints are saved.
self.assertSequenceEqual(checkpointer.all_steps(), [42, 43])
checkpointer.save(update_train_state_step(train_state, 44))
# Assert the non-pinned checkpoint gets deleted, but the pinned and the most
# recent one are still saved.
self.assertSequenceEqual(checkpointer.all_steps(), [42, 44])
@mock.patch('time.time', return_value=0)
def test_keep_dataset_checkpoints(self, unused_mock_time):
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
dataset_iterator = iter(tf.data.Dataset.range(10))
checkpointer = checkpoints.Checkpointer(
train_state,
no_partitions_partitioner,
self.tmp_dir,
dataset_iterator=dataset_iterator,
keep=2,
keep_dataset_checkpoints=1)
checkpointer.save(update_train_state_step(train_state, 42))
self.assertSequenceEqual(checkpointer.all_steps(), [42])
self.assertSequenceEqual(checkpointer.all_dataset_checkpoint_steps(), [42])
checkpointer.save(update_train_state_step(train_state, 43))
self.assertSequenceEqual(checkpointer.all_steps(), [42, 43])
self.assertSequenceEqual(checkpointer.all_dataset_checkpoint_steps(), [43])
checkpointer.save(update_train_state_step(train_state, 44))
self.assertSequenceEqual(checkpointer.all_steps(), [43, 44])
self.assertSequenceEqual(checkpointer.all_dataset_checkpoint_steps(), [44])
checkpointer.keep = 1
checkpointer.save(update_train_state_step(train_state, 45))
self.assertSequenceEqual(checkpointer.all_steps(), [45])
self.assertSequenceEqual(checkpointer.all_dataset_checkpoint_steps(), [45])
checkpointer.keep = 3
checkpointer.save(update_train_state_step(train_state, 46))
self.assertSequenceEqual(checkpointer.all_steps(), [45, 46])
self.assertSequenceEqual(checkpointer.all_dataset_checkpoint_steps(), [46])
@mock.patch('time.time', return_value=0)
def test_keep_dataset_checkpoints_pinned(self, unused_mock_time):
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
dataset_iterator = iter(tf.data.Dataset.range(10))
checkpointer = checkpoints.Checkpointer(
train_state,
no_partitions_partitioner,
self.tmp_dir,
dataset_iterator=dataset_iterator,
keep=1,
keep_dataset_checkpoints=1)
checkpointer.save(update_train_state_step(train_state, 42))
self.assertSequenceEqual(checkpointer.all_steps(), [42])
# Mark the checkpoint as pinned by creating the ALWAYS KEEP file.
ckpt_dir = self.checkpoints_dir.mkdir(f'checkpoint_{42}')
ckpt_dir.create_file('PINNED')
checkpointer.save(update_train_state_step(train_state, 43))
# Assert both the pinned and the most recent checkpoints are saved.
self.assertSequenceEqual(checkpointer.all_steps(), [42, 43])
self.assertSequenceEqual(checkpointer.all_dataset_checkpoint_steps(),
[42, 43])
checkpointer.save(update_train_state_step(train_state, 44))
# Assert the non-pinned checkpoint gets deleted, but the pinned and the most
# recent one are still saved.
self.assertSequenceEqual(checkpointer.all_steps(), [42, 44])
self.assertSequenceEqual(checkpointer.all_dataset_checkpoint_steps(),
[42, 44])
@mock.patch('time.time', return_value=0)
def test_keep_with_save_best_checkpointer(self, unused_mock_time):
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
checkpointer = checkpoints.SaveBestCheckpointer(
train_state,
no_partitions_partitioner,
self.tmp_dir,
keep=2,
metric_name_to_monitor='train/accuracy',
metric_mode='max',
keep_checkpoints_without_metrics=False)
# Test that without a valid set of metrics deletion falls back to oldest
# step (since keep_checkpoints_without_metrics is set to False).
checkpointer.save(update_train_state_step(train_state, 41))
self.assertSequenceEqual(checkpointer.all_steps(), [41])
checkpointer.save(update_train_state_step(train_state, 42))
self.assertSequenceEqual(checkpointer.all_steps(), [41, 42])
checkpointer.save(update_train_state_step(train_state, 43))
self.assertSequenceEqual(checkpointer.all_steps(), [41, 42, 43])
checkpointer.save(update_train_state_step(train_state, 44))
self.assertSequenceEqual(checkpointer.all_steps(), [42, 43, 44])
# Now create some metrics for steps 42, 43 and 44.
summary_writer = tensorboard.SummaryWriter(
os.path.join(self.tmp_dir, 'train'))
summary_writer.scalar('accuracy', 0.9, 42)
summary_writer.scalar('accuracy', 0.8, 43)
summary_writer.scalar('accuracy', 0.7, 44)
# Verify that both the newest (without a metrics) and best accuracy
# checkpoints are kept.
checkpointer.save(update_train_state_step(train_state, 45))
self.assertSequenceEqual(checkpointer.all_steps(), [42, 43, 45])
# Change mode to `min` and check that the checkpoints with highest accuracy
# are removed.
checkpointer._metric_mode = 'min'
# Add metrics to newly created checkpoint as well as a new checkpoint.
summary_writer.scalar('accuracy', 0.95, 45)
checkpointer.save(update_train_state_step(train_state, 46))
summary_writer.scalar('accuracy', 0.99, 46)
checkpointer.save(update_train_state_step(train_state, 47))
self.assertSequenceEqual(checkpointer.all_steps(), [42, 43, 47])
@mock.patch('time.time', return_value=0)
def test_keep_pinned_save_best_checkpointer(self, unused_mock_time):
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
checkpointer = checkpoints.SaveBestCheckpointer(
train_state,
no_partitions_partitioner,
self.tmp_dir,
keep=2,
metric_name_to_monitor='train/accuracy',
metric_mode='max',
keep_checkpoints_without_metrics=False)
summary_writer = tensorboard.SummaryWriter(
os.path.join(self.tmp_dir, 'train'))
checkpointer.save(update_train_state_step(train_state, 42))
summary_writer.scalar('accuracy', 0.9, 42)
checkpointer.save(update_train_state_step(train_state, 43))
summary_writer.scalar('accuracy', 0.7, 43)
checkpointer.save(update_train_state_step(train_state, 44))
summary_writer.scalar('accuracy', 0.8, 44)
self.assertSequenceEqual(checkpointer.all_steps(), [42, 43, 44])
# Mark checkpoint 43 as always keep.
ckpt_dir = self.checkpoints_dir.mkdir(f'checkpoint_{43}')
always_keep_ckpt_43 = ckpt_dir.create_file('PINNED')
# Verify that the pinned checkpoint 43 is always saved even though it does
# not have the best metrics, and keep = 2.
checkpointer.save(update_train_state_step(train_state, 45))
self.assertSequenceEqual(checkpointer.all_steps(), [42, 43, 44, 45])
checkpointer.save(update_train_state_step(train_state, 46))
summary_writer.scalar('accuracy', 0.6, 46)
# Remove the ALWAYS KEEP file for checkpoint 43.
gfile.rmtree(always_keep_ckpt_43.full_path)
# Checkpoint 43 should get deleted in the next update since it is not
# pinned and does not have the best metrics.
checkpointer.save(update_train_state_step(train_state, 47))
self.assertSequenceEqual(checkpointer.all_steps(), [42, 44, 47])
@mock.patch('time.time', return_value=0)
def test_keep_pinned_save_best_checkpointer_missing_metrics(
self, unused_mock_time):
"""Test for `keep_checkpoints_without_metrics` behavior."""
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
# Use SaveBestCheckpointer with default keep_checkpoints_without_metrics.
checkpointer = checkpoints.SaveBestCheckpointer(
train_state,
no_partitions_partitioner,
self.tmp_dir,
keep=1,
metric_name_to_monitor='train/accuracy',
metric_mode='max')
# Pre-create metrics for only some of the steps.
summary_writer = tensorboard.SummaryWriter(
os.path.join(self.tmp_dir, 'train'))
summary_writer.scalar('accuracy', 0.5, 43)
summary_writer.scalar('accuracy', 0.4, 44)
summary_writer.scalar('accuracy', 0.8, 45)
summary_writer.scalar('accuracy', 0.3, 46)
# Verify that we keep checkpoints for 41 and 42 even without metrics.
checkpointer.save(update_train_state_step(train_state, 41))
checkpointer.save(update_train_state_step(train_state, 42))
checkpointer.save(update_train_state_step(train_state, 43))
self.assertSequenceEqual(checkpointer.all_steps(), [41, 42, 43])
# Mark 41 and 43 checkpoints as pinned / to not be removed.
ckpt_dir_41 = self.checkpoints_dir.mkdir(f'checkpoint_{41}')
ckpt_dir_41.create_file('PINNED')
ckpt_dir_43 = self.checkpoints_dir.mkdir(f'checkpoint_{43}')
ckpt_dir_43.create_file('PINNED')
# Checkpoints 41 and 43 should always be kept because they are pinned.
checkpointer.save(update_train_state_step(train_state, 44))
self.assertSequenceEqual(checkpointer.all_steps(), [41, 42, 43, 44])
# Checkpoint 44 should get deleted on next save. 43 is saved inspite of
# it's low accuracy because it is pinned.
checkpointer.save(update_train_state_step(train_state, 45))
self.assertSequenceEqual(checkpointer.all_steps(), [41, 42, 43, 45])
@mock.patch('time.time', return_value=0)
def test_save_best_checkpointer_from_restart(self, unused_mock_time):
"""Emulate restart/preempt condition."""
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
# First, create a checkpointer that saves all checkpoints.
checkpointer = checkpoints.Checkpointer(
train_state, no_partitions_partitioner, self.tmp_dir, keep=None)
# Create a series of checkpoints. Create many checkpoints to stress test
# event collection (some methods employ lossy/sampling collection).
for i in range(100):
checkpointer.save(update_train_state_step(train_state, i))
self.assertSequenceEqual(checkpointer.all_steps(), list(range(100)))
# Now create some metrics for all steps, with high metrics on specific
# steps.
summary_writer = tensorboard.SummaryWriter(
os.path.join(self.tmp_dir, 'train'))
for i in range(100):
if i in (42, 53):
summary_writer.scalar('accuracy', i * 0.01, i)
else:
summary_writer.scalar('accuracy', i * 0.001, i)
# Replace checkpointer with SaveBest variant.
checkpointer = checkpoints.SaveBestCheckpointer(
train_state,
no_partitions_partitioner,
self.tmp_dir,
keep=2,
metric_name_to_monitor='train/accuracy',
metric_mode='max')
# Verify that pre-existing metrics are read and the appropriate checkpoints
# are deleted.
checkpointer.save(update_train_state_step(train_state, 101))
self.assertSequenceEqual(checkpointer.all_steps(), [42, 53, 101])
def test_save_best_checkpointer_force_keep_period(self):
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
checkpointer = checkpoints.SaveBestCheckpointer(
train_state,
no_partitions_partitioner,
self.tmp_dir,
keep=2,
metric_name_to_monitor='train/accuracy',
metric_mode='max',
keep_checkpoints_without_metrics=False,
force_keep_period=3)
summary_writer = tensorboard.SummaryWriter(
os.path.join(self.tmp_dir, 'train'))
# save checkpoints 0..9 with increasing accuracy
dict_actual_steps = {}
for c in range(10):
checkpointer.save(update_train_state_step(train_state, c))
summary_writer.scalar('accuracy', c / 100, c)
dict_actual_steps[c] = checkpointer.all_steps()
# Check when the last step=8 is not divisible by the keep_period=3
actual_steps_8 = dict_actual_steps[8]
expected_steps_8 = [0, 3, 5, 6, 7, 8]
self.assertSequenceEqual(actual_steps_8, expected_steps_8)
# Check when the last step=9 is divisible by the keep_period=3
actual_steps_9 = dict_actual_steps[9]
expected_steps_9 = [0, 3, 6, 7, 8, 9]
self.assertSequenceEqual(actual_steps_9, expected_steps_9)
@mock.patch('time.time', return_value=0)
def test_save_best_checkpointer_missing_metrics(self, unused_mock_time):
"""Test for `keep_checkpoints_without_metrics` behavior."""
no_partitions_partitioner = self.get_partitioner(0, 1, 1)
train_state = self.train_state
# Replace checkpointer with SaveBest variant.
checkpointer = checkpoints.SaveBestCheckpointer(
train_state,
no_partitions_partitioner,
self.tmp_dir,
keep=1,
metric_name_to_monitor='train/accuracy',
metric_mode='max')
# Pre-create metrics for only some of the steps.
summary_writer = tensorboard.SummaryWriter(
os.path.join(self.tmp_dir, 'train'))
summary_writer.scalar('accuracy', 0.6, 43)
summary_writer.scalar('accuracy', 0.5, 44)
summary_writer.scalar('accuracy', 0.4, 45)
# Verify that we always keep checkpoints for 41 and 42 (no metrics) and that
# number to keep applies to other checkpoints.
checkpointer.save(update_train_state_step(train_state, 41))
self.assertSequenceEqual(checkpointer.all_steps(), [41])
checkpointer.save(update_train_state_step(train_state, 42))
self.assertSequenceEqual(checkpointer.all_steps(), [41, 42])
checkpointer.save(update_train_state_step(train_state, 43))
self.assertSequenceEqual(checkpointer.all_steps(), [41, 42, 43])
checkpointer.save(update_train_state_step(train_state, 44))
self.assertSequenceEqual(checkpointer.all_steps(), [41, 42, 43, 44])
# Checkpoint 44 should get deleted on next save.
checkpointer.save(update_train_state_step(train_state, 45))
self.assertSequenceEqual(checkpointer.all_steps(), [41, 42, 43, 45])
# When switching keep_checkpoints_without_metrics to False, we should see
# checkpoints 41 and 42 also be deleted.
checkpointer._keep_checkpoints_without_metrics = False
checkpointer.save(update_train_state_step(train_state, 46))
self.assertSequenceEqual(checkpointer.all_steps(), [43, 46])
def test_assignment_map(self):
self.validate_save(1, 1)
# Change optimizer
optimizer = optimizers.Optimizer(
optimizers.sgd(0.1),
state=optimizers.OptimizerState(
step=np.int32(42),
param_states={
'bias': np.int32(1),
'kernel': np.array([1, 2], np.uint8)
}),
target={
'bias': np.arange(4, dtype=jnp.bfloat16).reshape((4, 1)),
'layer1': {
'bias': np.arange(4, dtype=jnp.bfloat16).reshape((4, 1)),
'kernel': np.arange(32, dtype=np.float32).reshape((2, 16))
},
'layer2': {
'bias': np.arange(32, dtype=np.float32).reshape((2, 16)),
'kernel': np.arange(32, dtype=np.float32).reshape((2, 16))
}
})
self.train_state = FlaxOptimTrainState(optimizer)
actual_train_state = self.call_host_checkpointer(
0,
1,
self.get_partitioner(
0, 1, 1, mesh_axes=jax.tree_map(lambda x: None, self.train_state)),
lambda c: c.restore( # pylint:disable=g-long-lambda
step=42,
state_transformation_fns=[
functools.partial(
state_utils.apply_assignment_map,
assignment_map=[('target/layer2/bias', 'target/kernel'),
('target/layer\\d/(.*)', 'target/\\1')])
]),
np.float32,
None)
self.assertEqual(actual_train_state.step, 42)
self.assertEqual(actual_train_state._optimizer.optimizer_def,
self.train_state._optimizer.optimizer_def)
jax.tree_multimap(np.testing.assert_array_equal,
actual_train_state.param_states,
self.train_state.param_states)
jax.tree_multimap(np.testing.assert_array_equal, actual_train_state.params,
self.train_state.params)
def test_assignment_map_unused(self):
self.validate_save(1, 1)
with self.assertRaisesWithLiteralMatch(
ValueError,
"Unused patterns in `assignment_map`: {'target/layer\\d/(.*)'}"):
self.call_host_checkpointer(
0,
1,
self.get_partitioner(0, 1, 1),
lambda c: c.restore( # pylint:disable=g-long-lambda
step=42,
state_transformation_fns=[
functools.partial(
state_utils.apply_assignment_map,
assignment_map=[('target/layer\\d/(.*)', 'target/\\1')])
]),
np.float32,
None)
def test_assignment_map_noexists(self):
self.validate_save(1, 1)
with self.assertRaisesWithLiteralMatch(
ValueError,
"Parameter 'target/layer/bias' does not exist in restore checkpoint. "
"Must be one of: ['state/param_states/bias', "
"'state/param_states/kernel', 'state/step', 'target/bias', "
"'target/kernel']"):
self.call_host_checkpointer(
0,
1,
self.get_partitioner(0, 1, 1),
lambda c: c.restore( # pylint:disable=g-long-lambda
step=42,
state_transformation_fns=[
functools.partial(
state_utils.apply_assignment_map,
assignment_map=[('target/(.*)', 'target/layer/\\1')])
]),
np.float32,
None)
def test_assignment_map_partial_restore(self):
self.validate_save(1, 1)
# Change optimizer
optimizer = optimizers.Optimizer(
optimizers.sgd(0.1),
state=optimizers.OptimizerState(
step=np.int32(42),
param_states={
'bias': np.int32(1),
'kernel': np.array([1, 2], np.uint8)
}),
target={
'bias': np.arange(4, dtype=jnp.bfloat16).reshape((4, 1)),
'layer1': {
'bias': np.arange(4, dtype=jnp.bfloat16).reshape((4, 1)),
'kernel': np.arange(32, dtype=np.float32).reshape((2, 16))
},
'layer2': {
'bias': np.arange(32, dtype=np.float32).reshape((2, 16)),
'kernel': np.arange(32, dtype=np.float32).reshape((2, 16))
}
})
self.train_state = FlaxOptimTrainState(optimizer)
actual_train_state = self.call_host_checkpointer(
0,
1,
self.get_partitioner(
0, 1, 1, mesh_axes=jax.tree_map(lambda x: None, self.train_state)),
lambda c: c.restore( # pylint:disable=g-long-lambda
step=42,
state_transformation_fns=[
functools.partial(
state_utils.apply_assignment_map,
assignment_map=[
# Restore only the target kernels.
(r'target/layer(\d+)/kernel', r'target/kernel'),
(r'target.*bias', None),
(r'state.*', None)])
],
fallback_state={
# Initialize biases and optimizer state "from scratch"
'target': {
'bias': np.arange(4, dtype=jnp.bfloat16).reshape((4, 1)),
'layer1': {
'bias': np.arange(4, dtype=jnp.bfloat16).reshape((4, 1)),
},
'layer2': {
'bias': np.arange(32, dtype=np.float32).reshape((2, 16)),
}
},
'state': {
'step': 1337, # Note: original optimizer is step=42
'param_states': {
'bias': 1,
'kernel': np.array([1, 2], np.uint8)
}
}
}),
np.float32,
None)
self.assertEqual(actual_train_state._optimizer.optimizer_def,
self.train_state._optimizer.optimizer_def)
self.assertEqual(actual_train_state.step, 1337) # note: from-scratch
jax.tree_multimap(np.testing.assert_array_equal,
actual_train_state.param_states,
self.train_state.param_states)
jax.tree_multimap(np.testing.assert_array_equal, actual_train_state.params,
self.train_state.params)
def verify_restore_checkpoint_from_path(
self,
path,
model,
decoder_only=False,
partitioner_class=partitioning.PjitPartitioner):
partitioner = partitioner_class(num_partitions=1)
input_features = {'decoder_input_tokens': tf.zeros([2, 8])}
if not decoder_only:
input_features['encoder_input_tokens'] = tf.zeros([2, 8])
train_ds = tf.data.Dataset.from_tensors(input_features)
train_state_initializer = utils.TrainStateInitializer(
optimizer_def=model.optimizer_def,
init_fn=model.get_initial_variables,
input_shapes={k: v.shape for k, v in train_ds.element_spec.items()},
partitioner=partitioner)
restored = list(
train_state_initializer.from_checkpoints(
[utils.RestoreCheckpointConfig(mode='specific', path=path)]))
self.assertLen(restored, 1)
return restored[0]
def test_checkpointer_in_threaded_env(self):
"""Tests use of asyncio in checkpointer works with non-main threads."""
executor = concurrent.futures.thread.ThreadPoolExecutor(max_workers=1)
save = executor.submit(self.validate_save, 1, 1)
save.result()
restore = executor.submit(self.validate_restore, 1, 1)
restore.result()
def test_find_checkpoint(self):
# `model_dir` with no step
self.assertEqual(
checkpoints.find_checkpoint(self.fake_checkpoints),
os.path.join(self.fake_checkpoints, f'checkpoint_{self.steps[-1]}',
'checkpoint'))
# `model_dir` with step
step = 100
self.assertEqual(
checkpoints.find_checkpoint(self.fake_checkpoints, step),
os.path.join(self.fake_checkpoints, f'checkpoint_{step}', 'checkpoint'))
# checkpoint_dir
self.assertEqual(
checkpoints.find_checkpoint(
os.path.join(self.fake_checkpoints, f'checkpoint_{step}')),
os.path.join(self.fake_checkpoints, f'checkpoint_{step}', 'checkpoint'))
# checkpoint_dir with step
with self.assertRaises(ValueError):
_ = checkpoints.find_checkpoint(
os.path.join(self.fake_checkpoints, f'checkpoint_{step}'), 1000),
# checkpoint_file
path = os.path.join(self.fake_checkpoints, f'checkpoint_{step}',
'checkpoint')
self.assertEqual(checkpoints.find_checkpoint(path), path)
# checkpoint_file with step
self.assertEqual(checkpoints.find_checkpoint(path, 1000), path)
# Error with step
with self.assertRaises(ValueError):
checkpoints.find_checkpoint(self.fake_checkpoints, 1000)
# Error
with self.assertRaises(ValueError):
checkpoints.find_checkpoint(
os.path.join(self.fake_checkpoints, 'checkpoint'))
def test_restore_tf_as_t5x(self):
checkpoint_path = os.path.join(TESTDATA, 'mtf_tiny_t5')
partitioner = self.get_partitioner(0, 1, 1)
with self.assertRaisesRegex(
ValueError,
'Attempting to restore a TensorFlow checkpoint as a native T5X '
'checkpoint. Use `restore_from_tf_checkpoint` instead. Path: .*'):
self.call_host_checkpointer(0, 1, partitioner,
lambda c: c.restore(path=checkpoint_path),
np.float32, None)
def test_restore_from_invalid_path(self):
with self.assertRaisesRegex(ValueError,
r'Path is not a valid T5X checkpoint: .*'):
self.verify_restore_checkpoint_from_path(TESTDATA,
test_utils.get_t5_test_model())
with self.assertRaisesRegex(ValueError,
r'Path is not a valid T5X checkpoint: .*'):
self.verify_restore_checkpoint_from_path(
os.path.join(TESTDATA, 'checkpoint'), test_utils.get_t5_test_model())
def test_save_lazy_optimizer(self):
# Call save one to get the parameters onto disk
self.validate_save(1, 1)
# Load the parameters in a lazy way
partitioner = self.get_partitioner(0, 1, 1, params_on_devices=False)
step = 42
train_state = self.call_host_checkpointer(
0,
1,
partitioner,
lambda c: c.restore( # pylint: disable=g-long-lambda
step=step, lazy_parameters=True),
np.float32,
None)
# Increment the step so we can save it
new_step = train_state.step.get() + 1
state_dict = train_state.state_dict()
state_dict['state']['step'] = new_step
train_state = train_state.restore_state(state_dict)
# Save the train state that is made of lazy parameters.
self.call_host_checkpointer(
0, 1, partitioner,
lambda c: c.save(train_state=train_state, concurrent_gb=2), np.float32,
None)
# Load what we just saved to inspect values
loaded_train_state = checkpoints.load_t5x_checkpoint(
self.tmp_dir, step=new_step)
# Make sure the parameters are the same.
train_state = jax.tree_map(
lambda x: x.get() # pylint: disable=g-long-lambda
if isinstance(x, LazyArray) else x,
train_state)
jax.tree_multimap(np.testing.assert_allclose, train_state.state_dict(),
loaded_train_state)
def test_update_ts_from_gfile_to_gcs(self):
ckpt_contents = {
'version': 3,
'optimizer': {
'target': {
'unsharded_param': np.ones((5, 5), dtype=np.int32),
'sharded_param': {
'driver': 'zarr',
'dtype': 'float32',
'kvstore': {
'driver': 'file',
'path': 'target.sharded_param'
},
'metadata': {
'chunks': [768, 768],
'compressor': {
'id': 'gzip',
'level': 1
},
'shape': [768, 768]
}
}
}
}
}
expected = {
'version': 3,
'optimizer': {
'target': {
# np.ndarray should not change
'unsharded_param': np.ones((5, 5), dtype=np.int32),
'sharded_param': {
'driver': 'zarr',
'dtype': 'float32',
'kvstore': {
'bucket': 't5x-dummy-bucket',
'driver': 'gcs',
'path': 'target.sharded_param'
},
'metadata': {
'chunks': [768, 768],
'compressor': {
'id': 'gzip',
'level': 1
},
'shape': [768, 768]
}
}
}
}
}
actual = checkpoints._maybe_update_ts_from_file_to_gcs(ckpt_contents)
jax.tree_multimap(np.testing.assert_array_equal, actual, expected)
def test_update_ts_from_gcs_to_file(self):
ckpt_contents = {
'version': 3,
'optimizer': {
'target': {
# np.ndarray should not change
'unsharded_param': np.ones((5, 5), dtype=np.int32),
'sharded_param': {
'driver': 'zarr',
'dtype': 'float32',
'kvstore': {
'bucket': 't5x-dummy-bucket',
'driver': 'gcs',
'path': 'target.sharded_param'
},
'metadata': {
'chunks': [768, 768],
'compressor': {
'id': 'gzip',
'level': 1
},
'shape': [768, 768]
},
}
}
}
}
driver = 'file'
expected = {
'version': 3,
'optimizer': {
'target': {
'unsharded_param': np.ones((5, 5), dtype=np.int32),
'sharded_param': {
'driver': 'zarr',
'dtype': 'float32',
'kvstore': {
'driver': driver,
'path': 'target.sharded_param'
},
'metadata': {
'chunks': [768, 768],
'compressor': {
'id': 'gzip',
'level': 1
},
'shape': [768, 768]
}
}
}
}
}
actual = checkpoints._maybe_update_ts_from_gcs_to_file(ckpt_contents)
jax.tree_multimap(np.testing.assert_array_equal, actual, expected)
def assert_update_ts_path_from_relative_to_absolute(self, ts_spec_dict,
expected, ckpt_dir):
"""Tests that `ts_spec_dict` gets updated with `ckpt_dir` to `expected`."""
# Test with normalization (corresponds to tensorstore>=0.1.14)
normalized_ts_spec_dict = ts.Spec(ts_spec_dict).to_json()
checkpoints._update_ts_path_from_relative_to_absolute(
ckpt_dir, normalized_ts_spec_dict)
normalized_ts_spec_dict = ts.Spec(normalized_ts_spec_dict).to_json()
normalized_expected = ts.Spec(expected).to_json()
jax.tree_multimap(np.testing.assert_array_equal, normalized_ts_spec_dict,
normalized_expected)
# Test without normalization (corresponds to tensorstore<0.1.14)
checkpoints._update_ts_path_from_relative_to_absolute(
ckpt_dir, ts_spec_dict)
jax.tree_multimap(np.testing.assert_array_equal, ts_spec_dict, expected)
def test_update_ts_path_from_relative_to_absolute_gfile(self):
ts_spec_dict = {
'driver': 'zarr',
'dtype': 'float32',
'kvstore': {
'driver': 'file',
'path': 'target.encoder.layers_0.attention.query.kernel'
},
'metadata': {
'chunks': [768, 768],
'compressor': {
'id': 'gzip',
'level': 1
},
'shape': [768, 768]
}
}
expected = {
'driver': 'zarr',
'dtype': 'float32',
'kvstore': {
'driver': 'file',
# Path becomes absolute.
'path': '/dir1/dir2/target.encoder.layers_0.attention.query.kernel'
},
'metadata': {
'chunks': [768, 768],
'compressor': {
'id': 'gzip',
'level': 1
},
'shape': [768, 768]
}
}
ckpt_dir = '/dir1/dir2'
self.assert_update_ts_path_from_relative_to_absolute(
ts_spec_dict, expected, ckpt_dir)
def test_update_ts_path_from_relative_to_absolute_gcs(self):
ts_spec_dict = {
'driver': 'zarr',
'dtype': 'float32',
'kvstore': {
'bucket': 't5x-dummy-bucket',
'driver': 'gcs'
},
'metadata': {
'chunks': [768, 768],
'compressor': {
'id': 'gzip',
'level': 1
},
'shape': [768, 768]
},
'path': 'target.encoder.layers_0.attention.query.kernel',
'transform': {
'input_exclusive_max': [[768], [768]],
'input_inclusive_min': [0, 0]
}
}
expected = {
'driver': 'zarr',
'dtype': 'float32',
'kvstore': {
'bucket': 'test-bucket', # bucket should be changed.
'driver': 'gcs'
},
'metadata': {
'chunks': [768, 768],
'compressor': {
'id': 'gzip',
'level': 1
},
'shape': [768, 768]
},
# Path becomes absolute without the "gs://bucket" portion stripped.
'path': 'dir1/dir2/target.encoder.layers_0.attention.query.kernel',
'transform': {
'input_exclusive_max': [[768], [768]],
'input_inclusive_min': [0, 0]
}
}
ckpt_dir = 'gs://test-bucket/dir1/dir2'
self.assert_update_ts_path_from_relative_to_absolute(
ts_spec_dict, expected, ckpt_dir)
def test_restore_tf_checkpoint(self):
self.verify_restore_checkpoint_from_path(
os.path.join(TESTDATA, 'mtf_tiny_t5/model.ckpt-0'),
test_utils.get_t5_test_model(
emb_dim=32, head_dim=64, num_heads=2, mlp_dim=64))
def test_restore_tf_checkpoint_wrong_config(self):
with self.assertRaisesRegex(ValueError, r'Variable .* has shape .* != .*'):
self.verify_restore_checkpoint_from_path(
os.path.join(TESTDATA, 'mtf_tiny_t5/model.ckpt-0'),
test_utils.get_t5_test_model())
def test_convert_tf_checkpoint(self):
checkpoint_path = os.path.join(TESTDATA, 'mtf_tiny_t5/model.ckpt-0')
# Minimal setup to create an optimizer with the matching config.
model = test_utils.get_t5_test_model(
emb_dim=32, head_dim=64, num_heads=2, mlp_dim=64)
partitioner = partitioning.PjitPartitioner(num_partitions=1)
def initialize_params_fn(rng):
initial_variables = model.get_initial_variables(
rng=rng,
input_shapes={
'encoder_input_tokens': (2, 512),
'decoder_input_tokens': (2, 114),
})
return FlaxOptimTrainState.create(model.optimizer_def, initial_variables)
train_state = jax.eval_shape(initialize_params_fn, jax.random.PRNGKey(0))
checkpointer = checkpoints.Checkpointer(train_state, partitioner,
self.tmp_dir)
_ = checkpointer.convert_from_tf_checkpoint(checkpoint_path)
def test_load_matched(self):
checkpoint = os.path.join(TESTDATA, 'test_t5_tiny.checkpoint_0')
train_state = self.verify_restore_checkpoint_from_path(
checkpoint, test_utils.get_t5_test_model())
state_dict = train_state._optimizer.state_dict()
ckpt = checkpoints.load_t5x_checkpoint(checkpoint)
jax.tree_multimap(np.testing.assert_array_equal, state_dict, ckpt)
if __name__ == '__main__':
absltest.main()
|