Spaces:
Build error
Build error
File size: 9,301 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint:disable=line-too-long
# pyformat: disable
r"""This script runs inference-evaluation on a T5X-compatible model.
"""
# pyformat: enable
# pylint:enable=line-too-long
import functools
import os
from typing import Optional, Sequence, Type
# pylint:disable=g-import-not-at-top
# TODO(adarob): Re-enable once users are notified and tests are updated.
os.environ['FLAX_LAZY_RNG'] = 'no'
from absl import logging
from clu import metric_writers
import jax
from jax.experimental import multihost_utils
import seqio
from t5x import gin_utils
from t5x import models
from t5x import partitioning
from t5x import utils
from typing_extensions import Protocol
# Automatically search for gin files relative to the T5X package.
_DEFAULT_GIN_SEARCH_PATHS = [
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
]
class SummarizeConfigFn(Protocol):
def __call__(self, model_dir: str,
summary_writer: Optional[metric_writers.SummaryWriter],
step: int) -> None:
...
def evaluate(
*,
model: models.BaseTransformerModel,
dataset_cfg: utils.DatasetConfig,
restore_checkpoint_cfg: utils.RestoreCheckpointConfig,
partitioner: partitioning.BasePartitioner,
output_dir: str,
inference_evaluator_cls: Type[seqio.Evaluator] = seqio.Evaluator,
summarize_config_fn: SummarizeConfigFn = gin_utils.summarize_gin_config,
fallback_init_rng: Optional[int] = None):
"""Evaluation function.
Args:
model: The model object to use for inference.
dataset_cfg: Specification for the dataset to infer based on.
restore_checkpoint_cfg: Specification for the model parameter checkpoint to
load.
partitioner: Partitioner for the model parameters and data across devices.
output_dir: Path to directory to write temporary files and final results.
inference_evaluator_cls: seqio.Evaluator class to use for inference
evaluation, potentially with bound configuration args.
summarize_config_fn: A function that takes in the model directory, an
optional SummaryWriter, and the step number, and writes a summary of the
configuration. SummaryWriter will be None in most cases.
fallback_init_rng: A random seed used for parameter initialization during
model re-loading when utils.RestoreCheckpointConfig.fallback_to_scratch is
set to True. If None, parameter initialization is not allowed during model
loading and having fallback_to_scratch enabled will result in an error.
"""
logging.info('Process ID: %d', jax.process_index())
if dataset_cfg.module:
utils.import_module(dataset_cfg.module)
batch_size = dataset_cfg.batch_size
summarize_config_fn(model_dir=output_dir, summary_writer=None, step=0)
ds_vocabs = utils.get_vocabulary(dataset_cfg)
if (ds_vocabs[0] != model.input_vocabulary or
ds_vocabs[1] != model.output_vocabulary):
raise ValueError(f'Model and Task vocabularies do not match:\n'
f' task={dataset_cfg.mixture_or_task_name}\n'
f' ds_vocabs=({ds_vocabs[0]}, {ds_vocabs[1]})\n'
f' model.input_vocabulary={model.input_vocabulary}\n'
f' model.output_vocabulary={model.output_vocabulary}\n')
# ----------------------------------------------------------------------------
# SeqIO (inference-based) evaluation setup
# ----------------------------------------------------------------------------
# Init evaluator to set up cached datasets
evaluator = inference_evaluator_cls(
mixture_or_task_name=dataset_cfg.mixture_or_task_name,
feature_converter=model.FEATURE_CONVERTER_CLS(pack=False),
eval_split=dataset_cfg.split,
use_cached=dataset_cfg.use_cached,
seed=dataset_cfg.seed,
sequence_length=dataset_cfg.task_feature_lengths,
log_dir=os.path.join(output_dir, 'inference_eval'))
if not evaluator.eval_tasks:
raise ValueError(
f"'{dataset_cfg.mixture_or_task_name}' has no metrics for evaluation.")
# ----------------------------------------------------------------------------
# T5X model loading.
# ----------------------------------------------------------------------------
# Initialize optimizer from the existing checkpoint.
input_shapes = {
k: (batch_size,) + s for k, s in evaluator.model_feature_shapes.items()
}
train_state_initializer = utils.TrainStateInitializer(
optimizer_def=None, # Do not load optimizer state.
init_fn=model.get_initial_variables,
input_shapes=input_shapes,
partitioner=partitioner)
train_state_axes = train_state_initializer.train_state_axes
# Log the variable shapes information and write to a file.
log_file = os.path.join(output_dir, 'model-info.txt')
utils.log_model_info(log_file,
train_state_initializer.global_train_state_shape,
partitioner)
predict_fn = None
score_fn = None
# Disable strictness since we are dropping the optimizer state.
restore_checkpoint_cfg.strict = False
if fallback_init_rng is not None:
fallback_init_rng = jax.random.PRNGKey(fallback_init_rng)
for train_state in train_state_initializer.from_checkpoints(
[restore_checkpoint_cfg], init_rng=fallback_init_rng):
# Compile the model only once.
if not predict_fn:
predict_fn = utils.get_infer_fn(
infer_step=model.predict_batch,
batch_size=batch_size,
train_state_axes=train_state_axes,
partitioner=partitioner)
predict_with_aux_fn = utils.get_infer_fn(
infer_step=model.predict_batch_with_aux,
batch_size=batch_size,
train_state_axes=train_state_axes,
partitioner=partitioner)
score_fn = utils.get_infer_fn(
infer_step=model.score_batch,
batch_size=batch_size,
train_state_axes=train_state_axes,
partitioner=partitioner)
# ----------------------------------------------------------------------------
# Main training loop
# ----------------------------------------------------------------------------
# Run final evaluation (with decoding) on the full eval dataset.
all_metrics, _, _ = evaluator.evaluate(
compute_metrics=jax.process_index() == 0,
step=int(train_state.step),
predict_fn=functools.partial(
predict_fn, train_state=train_state, rng=jax.random.PRNGKey(0)),
score_fn=functools.partial(score_fn, train_state=train_state),
predict_with_aux_fn=functools.partial(
predict_with_aux_fn,
train_state=train_state,
rng=jax.random.PRNGKey(0)))
all_metrics.result() # Ensure metrics are finished being computed.
# Wait until computations are done before continuing.
multihost_utils.sync_global_devices(f'step_{train_state.step}:complete')
logging.info('Finished.')
if __name__ == '__main__':
from absl import app
from absl import flags
import gin
FLAGS = flags.FLAGS
jax.config.parse_flags_with_absl()
flags.DEFINE_multi_string(
'gin_file',
default=None,
help='Path to gin configuration file. Multiple paths may be passed and '
'will be imported in the given order, with later configurations '
'overriding earlier ones.')
flags.DEFINE_multi_string(
'gin_bindings', default=[], help='Individual gin bindings.')
flags.DEFINE_list(
'gin_search_paths',
default=['.'],
help='Comma-separated list of gin config path prefixes to be prepended '
'to suffixes given via `--gin_file`. If a file appears in. Only the '
'first prefix that produces a valid path for each suffix will be '
'used.')
flags.DEFINE_string(
'tfds_data_dir', None,
'If set, this directory will be used to store datasets prepared by '
'TensorFlow Datasets that are not available in the public TFDS GCS '
'bucket. Note that this flag overrides the `tfds_data_dir` attribute of '
'all `Task`s.')
def main(argv: Sequence[str]):
"""Wrapper for pdb post mortems."""
_main(argv)
def _main(argv: Sequence[str]):
"""True main function."""
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
if FLAGS.tfds_data_dir:
seqio.set_tfds_data_dir_override(FLAGS.tfds_data_dir)
# Create gin-configurable version of `eval`.
evaluate_using_gin = gin.configurable(evaluate)
gin_utils.parse_gin_flags(
# User-provided gin paths take precedence if relative paths conflict.
FLAGS.gin_search_paths + _DEFAULT_GIN_SEARCH_PATHS,
FLAGS.gin_file,
FLAGS.gin_bindings)
evaluate_using_gin()
gin_utils.run(main)
|