File size: 36,298 Bytes
b100e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for t5x.decoding."""

import functools
from typing import Mapping, Tuple
from unittest import mock

from absl.testing import absltest
from absl.testing import parameterized
import jax
from jax._src import api
from jax.experimental import host_callback as hcb
import jax.numpy as jnp
import numpy as np
from t5x import decoding

EOS_ID = 1
NEG_INF = decoding.NEG_INF


class DecodeTest(parameterized.TestCase):

  def test_temperature_sample_uneven_prefix(self):

    def token_to_logits(ids, cache):
      del ids
      del cache
      # Always sample id 2 for batch element 0 and id 3 for element 1.
      logits = np.array([[-1e7, -1e7, 0, -1e7], [-1e7, -1e7, -1e7, 0]],
                        dtype=np.float32)
      return logits, {}

    inputs = np.array([[0, 5, 7, 1, 0, 0], [0, 6, 1, 0, 0, 0]])
    sampled_sequences, _ = decoding._temperature_sample_single_trial(
        inputs, {},
        token_to_logits,
        EOS_ID,
        jax.random.PRNGKey(0),
        topk=0,
        initial_index=np.array([3, 2]))
    expected = np.array([[5, 7, 1, 2, 2, 2], [6, 1, 3, 3, 3, 3]])
    np.testing.assert_array_equal(expected, sampled_sequences)

  def test_temperature_sample_no_prefix(self):
    batch, max_decode_len = 2, 3

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # Always sample id 2 for batch element 0 and id 3 for element 1.
      logits = np.array([[-1e7, -1e7, 0, -1e7], [-1e7, -1e7, -1e7, 0]],
                        dtype=np.float32)
      return logits, {}

    inputs = np.zeros((batch, max_decode_len), dtype=np.int32)
    sampled_sequences, _ = decoding._temperature_sample_single_trial(
        inputs, {}, token_to_logits, EOS_ID, jax.random.PRNGKey(0), topk=0)

    expected = [[2, 2, 2], [3, 3, 3]]
    np.testing.assert_array_equal(expected, sampled_sequences)

  def test_temperature_sample_prefix(self):

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # Always sample id 2 for batch element 0 and id 3 for element 1.
      logits = np.array([[-1e7, -1e7, 0, -1e7], [-1e7, -1e7, -1e7, 0]],
                        dtype=np.float32)
      return logits, {}

    # batch element 0 has length 3 prefix and element 1 has length 2.
    inputs = np.array([[0, 5, 6, 7, 0], [0, 8, 9, 0, 0]], dtype=np.int32)
    sampled_sequences, _ = decoding._temperature_sample_single_trial(
        inputs, {}, token_to_logits, EOS_ID, jax.random.PRNGKey(0), topk=0)

    expected = [[5, 6, 7, 2, 2], [8, 9, 3, 3, 3]]
    np.testing.assert_array_equal(expected, sampled_sequences)

  def test_temperature_sample_with_zero_temperature(self):
    batch, max_decode_len = 2, 3

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # Use very large logits that are close to one another.
      logits = np.array(
          [[1700.47, 1700.48, 1700.51, 1700.45], [3.2, 4.8, -5.3, 5.6]],
          dtype=np.float32)
      return logits, {}

    inputs = np.zeros((batch, max_decode_len), dtype=np.int32)
    sampled_sequences, _ = decoding._temperature_sample_single_trial(
        inputs, {},
        token_to_logits,
        EOS_ID,
        jax.random.PRNGKey(0),
        topk=4,
        temperature=0.0)

    expected = [[2, 2, 2], [3, 3, 3]]
    np.testing.assert_array_equal(expected, sampled_sequences)

  def test_temperature_sample_prefix_ending_with_eos(self):

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # Always sample id 2 for batch element 0 and id 3 for element 1.
      logits = np.array([[-1e7, -1e7, 0, -1e7], [-1e7, -1e7, -1e7, 0]],
                        dtype=np.float32)
      return logits, {}

    # batch element 0 has length 4 prefix (including the initial dummy token and
    # the last eos) and element 1 has length 3.
    inputs = np.array([[0, 5, 6, 1, 0], [0, 8, 1, 0, 0]], dtype=np.int32)
    sampled_sequences, _ = decoding._temperature_sample_single_trial(
        inputs, {}, token_to_logits, EOS_ID, jax.random.PRNGKey(0), topk=1)

    expected = [[5, 6, 1, 2, 2], [8, 1, 3, 3, 3]]
    np.testing.assert_array_equal(expected, sampled_sequences)

  def test_temperature_sample_with_state_callback(self):

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # A distribution with roughly all probability mass in sample id 3
      logits = np.array([[-1e7, -1e7, -1e7, 0], [-1e7, -1e7, -1e7, 0]],
                        dtype=np.float32)
      return logits, {}

    def state_callback_fn(state):
      i, sequences, cache, cur_token, ended, rng, log_prob = state

      def callback_fn(current_index_and_sequences):
        """Add EOS token after first time token id 3 has been sampled."""
        current_index, sequences = current_index_and_sequences
        sequences = np.array(sequences)
        for i in range(len(current_index)):
          if sequences[i, current_index[i]] == 3:
            sequences[i, current_index[i] + 1] = EOS_ID
        return sequences

      sequences = hcb.call(
          callback_fn, (i, sequences),
          result_shape=api.ShapeDtypeStruct(sequences.shape, sequences.dtype))
      return i, sequences, cache, cur_token, ended, rng, log_prob

    inputs = np.array([[0, 5, 6, 7, 0], [0, 8, 9, 0, 0]], dtype=np.int32)
    sampled_sequences, _ = decoding._temperature_sample_single_trial(
        inputs, {},
        token_to_logits,
        EOS_ID,
        jax.random.PRNGKey(0),
        topk=0,
        temperature=0.0,
        state_callback_fn=state_callback_fn)

    expected = [[5, 6, 7, 3, EOS_ID], [8, 9, 3, EOS_ID, 0]]
    np.testing.assert_array_equal(expected, sampled_sequences)

  def test_temperature_sample_with_logit_callback(self):

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # uniform distribution over targets from model
      logits = np.array([[-1e7, -1e7, -1e7, -1e7], [-1e7, -1e7, -1e7, -1e7]],
                        dtype=np.float32)
      return logits, {}

    def logit_callback_fn(logits, state):
      del state  # unused
      # Rewrite logits to always sample id 2 for batch element 0 and
      # id 3 for element 1.
      logits[0, 2] = 0
      logits[1, 3] = 0
      return logits

    # batch element 0 has length 3 prefix and element 1 has length 2.
    inputs = np.array([[0, 5, 6, 7, 0], [0, 8, 9, 0, 0]], dtype=np.int32)
    sampled_sequences, _ = decoding._temperature_sample_single_trial(
        inputs, {},
        token_to_logits,
        EOS_ID,
        jax.random.PRNGKey(0),
        topk=0,
        temperature=0.0,
        logit_callback_fn=logit_callback_fn)

    expected = [[5, 6, 7, 2, 2], [8, 9, 3, 3, 3]]
    np.testing.assert_array_equal(expected, sampled_sequences)

  def test_temperature_sample_prefix_ending_with_eos_early_stop(self):
    batch, max_decode_len = 2, 7
    rng0 = jax.random.PRNGKey(0)

    ret = [np.array([2, 3]) for _ in range(max_decode_len)]
    # Sequence 1 outputs EOS=1 when i = 3 where `i` is the while loop counter of
    # `decoding._temperature_sample_single_trial`.
    ret[3] = np.array([2, 1])
    # Sequence 0 outputs EOS=1 when i = 4.
    ret[4] = np.array([1, 3])
    ret = jax.numpy.array(ret)

    def mocked_categorical(rng_input, logits):  # pylint: disable=unused-argument
      """Ignores logit and returns only based on the rng_input."""
      rng = rng0
      k = 0
      # Mimic the rng split done in `decoding.sample_loop_body_fn`.
      for j in range(max_decode_len):
        rng1, rng = jax.random.split(rng)
        # We want to sift out `j` for which rng1 == rng_input
        # rngs are a pair of ints. So sum the bool and divide by 2.
        k += j * (rng1 == rng_input).sum() // 2
      # `k` at this point is equal to the while loop variable `i` of the caller.
      return ret[k]

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # These values are not used in this test because random.categorical is
      # directly mocked.
      dummy_logits = np.zeros((batch, 4), dtype=np.float32)
      return dummy_logits, {}

    inputs = np.array([[0, 5, 1, 0, 0, 0, 0], [0, 8, 0, 0, 0, 0, 0]],
                      dtype=np.int32)
    with mock.patch.object(jax.random, 'categorical', new=mocked_categorical):
      sampled_sequences, _ = decoding._temperature_sample_single_trial(
          inputs, {}, token_to_logits, EOS_ID, rng0, topk=0)

    expected = [[5, 1, 2, 2, 1, 0, 0], [8, 3, 3, 1, 0, 0, 0]]
    np.testing.assert_array_equal(expected, sampled_sequences)

  def test_greedy_decoding_topk_sample_log_probs(self):

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # Sample [2, 3] with probability [0.6, 0.4].
      logits = np.array([[-1e7, -1e7, -0.510825624, -0.916290732]],
                        dtype=np.float32)
      return logits, {}

    inputs = np.array([[0, 2, 2, 2, 0]], dtype=np.int32)
    sampled_sequences, sampled_log_probs = decoding._temperature_sample_single_trial(
        inputs, {},
        token_to_logits,
        EOS_ID,
        jax.random.PRNGKey(0),
        topk=1,
        rescale_log_probs=True)

    expected_sequence = [[2, 2, 2, 2, 2]]
    expected_log_probs = [0.0]
    np.testing.assert_array_equal(expected_sequence, sampled_sequences)
    np.testing.assert_array_almost_equal(expected_log_probs, sampled_log_probs)

    inputs = np.array([[0, 2, 2, 3, 0]], dtype=np.int32)
    sampled_sequences, sampled_log_probs = decoding._temperature_sample_single_trial(
        inputs, {},
        token_to_logits,
        EOS_ID,
        jax.random.PRNGKey(0),
        topk=1,
        rescale_log_probs=False)

    expected_sequence = [[2, 2, 3, 2, 2]]
    expected_log_probs = [-1.02165125]
    np.testing.assert_array_equal(expected_sequence, sampled_sequences)
    np.testing.assert_array_almost_equal(expected_log_probs, sampled_log_probs)

  def test_temperature_sample_log_prob(self):
    batch, max_decode_len = 2, 7
    rng0 = jax.random.PRNGKey(0)

    ret = [np.array([2, 3]) for _ in range(max_decode_len)]
    # Sequence 1 outputs EOS=1 when i = 3 where `i` is the while loop counter of
    # `decoding._temperature_sample_single_trial`.
    ret[3] = np.array([2, 1])
    # Sequence 0 outputs EOS=1 when i = 4.
    ret[4] = np.array([1, 3])
    ret = jax.numpy.array(ret)

    # TODO(hwchung): refactor this.
    def mocked_categorical(rng_input, logits):  # pylint: disable=unused-argument
      """Ignores logit and returns only based on the rng_input."""
      rng = rng0
      k = 0
      # Mimic the rng split done in `decoding.sample_loop_body_fn`.
      for j in range(max_decode_len):
        rng1, rng = jax.random.split(rng)
        # We want to sift out `j` for which rng1 == rng_input
        # rngs are a pair of ints. So sum the bool and divide by 2.
        k += j * (rng1 == rng_input).sum() // 2
      # `k` at this point is equal to the while loop variable `i` of the caller.
      return ret[k]

    logits = np.random.randn(batch, 4)
    token_to_logits = lambda ids, cache: (logits, {})
    inputs = np.array([[0, 5, 1, 0, 0, 0, 0], [0, 8, 0, 0, 0, 0, 0]],
                      dtype=np.int32)
    with mock.patch.object(jax.random, 'categorical', new=mocked_categorical):
      sampled_sequences, log_prob = decoding._temperature_sample_single_trial(
          inputs, {}, token_to_logits, EOS_ID, rng0, topk=0)

    log_probs = jax.nn.log_softmax(logits)
    expected = [[5, 1, 2, 2, 1, 0, 0], [8, 3, 3, 1, 0, 0, 0]]
    expected_log_prob = [
        log_probs[0, 2] + log_probs[0, 2] + log_probs[0, 1],
        log_probs[1, 3] + log_probs[1, 3] + log_probs[1, 1]
    ]
    expected_log_prob = np.array(expected_log_prob)
    np.testing.assert_array_equal(expected, sampled_sequences)
    np.testing.assert_allclose(expected_log_prob, log_prob, atol=1e-5)

  def test_temperature_sample_num_decodes(self):
    num_decodes = 3
    rng0 = jax.random.PRNGKey(0)
    inputs = np.array([[0, 5, 1, 0], [0, 8, 7, 0]], dtype=np.int32)

    with mock.patch.object(decoding,
                           '_temperature_sample_single_trial') as mocked:
      # expanded_decodes: [batch * num_decodes, max_decode_len]
      expanded_decodes = np.array([[5, 1, 4, 4], [5, 1, 5, 5], [5, 1, 3, 3],
                                   [8, 7, 5, 5], [8, 7, 3, 3], [8, 7, 4, 4]])
      # expanded_log_prob: [batch * num_decodes]
      expanded_log_prob = np.array([-2.3, -1.3, -3.6, -0.5, -2.5, -1.9])
      mocked.return_value = expanded_decodes, expanded_log_prob

      decodes, scores = decoding.temperature_sample(
          inputs, {}, mock.Mock(), EOS_ID, rng0, num_decodes=num_decodes)

      expanded_inputs = jnp.array([[0, 5, 1, 0], [0, 5, 1, 0], [0, 5, 1, 0],
                                   [0, 8, 7, 0], [0, 8, 7, 0], [0, 8, 7, 0]])
      # Test that the actual decode function is called with the expanded values.
      np.testing.assert_array_equal(mocked.call_args[0][0], expanded_inputs)

    np.testing.assert_array_equal(decodes,
                                  [[[5, 1, 3, 3], [5, 1, 4, 4], [5, 1, 5, 5]],
                                   [[8, 7, 3, 3], [8, 7, 4, 4], [8, 7, 5, 5]]])
    np.testing.assert_allclose(scores, [[-3.6, -2.3, -1.3], [-2.5, -1.9, -0.5]])

  def test_temperature_sample_num_decodes_with_initial_index(self):
    num_decodes = 3
    rng0 = jax.random.PRNGKey(0)
    inputs = np.array([[0, 5, 1, 0], [0, 8, 7, 0]], dtype=np.int32)
    initial_index = np.array([1, 2], dtype=np.int32)

    with mock.patch.object(decoding,
                           '_temperature_sample_single_trial') as mocked:
      with mock.patch.object(decoding, 'cache_map') as mocked_cache_map:
        # expanded_decodes: [batch * num_decodes, max_decode_len]
        expanded_decodes = np.array([[5, 1, 4, 4], [5, 1, 5, 5], [5, 1, 3, 3],
                                     [8, 7, 5, 5], [8, 7, 3, 3], [8, 7, 4, 4]])
        # expanded_log_prob: [batch * num_decodes]
        expanded_log_prob = np.array([-2.3, -1.3, -3.6, -0.5, -2.5, -1.9])
        mocked.return_value = expanded_decodes, expanded_log_prob

        decodes, scores = decoding.temperature_sample(
            inputs, {},
            mock.Mock(),
            EOS_ID,
            rng0,
            num_decodes=num_decodes,
            initial_index=initial_index)

        expanded_inputs = jnp.array([[0, 5, 1, 0], [0, 5, 1, 0], [0, 5, 1, 0],
                                     [0, 8, 7, 0], [0, 8, 7, 0], [0, 8, 7, 0]])
        expanded_initial_index = np.array([1, 1, 1, 2, 2, 2], dtype=np.int32)
        # Test that the actual decode function is called with the expanded
        # values.
        np.testing.assert_array_equal(mocked.call_args[0][0], expanded_inputs)
        np.testing.assert_array_equal(mocked.call_args[1]['initial_index'],
                                      expanded_initial_index)
        # Test that the function was applied to the index in the cache map
        self.assertTrue(mocked_cache_map.call_args[1]['apply_to_index'])

    np.testing.assert_array_equal(decodes,
                                  [[[5, 1, 3, 3], [5, 1, 4, 4], [5, 1, 5, 5]],
                                   [[8, 7, 3, 3], [8, 7, 4, 4], [8, 7, 5, 5]]])
    np.testing.assert_allclose(scores, [[-3.6, -2.3, -1.3], [-2.5, -1.9, -0.5]])

  @parameterized.named_parameters(
      dict(
          testcase_name='no_initial_index',
          initial_index=None,
          expected_calls=6,
      ),
      dict(
          testcase_name='initial_index',
          initial_index=np.array([1, 2], dtype=np.int32),
          expected_calls=4,
      ),
      dict(
          testcase_name='lower_initial_index',
          initial_index=np.array([1, 1], dtype=np.int32),
          expected_calls=5,  # we decode 4 tokens out of the prompt
      ),
  )
  def test_temperature_sample_max_decode_steps_with_initial_index(
      self, initial_index, expected_calls):
    max_decode_steps = 4
    rng0 = jax.random.PRNGKey(0)
    inputs = np.array([[0, 2, 0, 0, 0, 0, 0, 0], [0, 2, 2, 0, 0, 0, 0, 0]],
                      dtype=np.int32)

    token_to_logits = mock.Mock()
    token_to_logits.return_value = (np.array(
        [[-1e7, -1e7, -1e7, 0], [-1e7, -1e7, -1e7, 0]], dtype=np.float32), {})

    # to unroll while loop
    with jax.disable_jit():
      decodes, scores = decoding.temperature_sample(
          inputs, {},
          token_to_logits,
          EOS_ID,
          rng0,
          initial_index=initial_index,
          topk=4,
          max_decode_steps=max_decode_steps)

    self.assertLen(token_to_logits.call_args_list, expected_calls)

    expected_output = np.array([[2, 3, 3, 3, 3, 0, 0, 0],
                                [2, 2, 3, 3, 3, 3, 0, 0]])
    expected_output = jnp.expand_dims(expected_output, 1)

    np.testing.assert_array_equal(decodes, expected_output)
    np.testing.assert_array_equal(scores, [[0.], [0.]])

  def test_temperature_sample_max_decode_steps_endpad(self):
    max_decode_steps = 4
    rng0 = jax.random.PRNGKey(0)
    inputs = np.array([[0, 2, 0, 0, 0, 0, 0, 0], [0, 2, 2, 2, 2, 2, 2, 0],
                       [0, 2, 2, 2, 0, 0, 0, 0]],
                      dtype=np.int32)
    initial_index = np.array([1, 6, 0])

    token_to_logits = mock.Mock()
    token_to_logits.return_value = (np.array(
        [[-1e7, -1e7, -1e7, 0], [-1e7, -1e7, -1e7, 0], [-1e7, -1e7, -1e7, 0]],
        dtype=np.float32), {})

    # to unroll while loop
    with jax.disable_jit():
      decodes, scores = decoding.temperature_sample(
          inputs, {},
          token_to_logits,
          EOS_ID,
          rng0,
          initial_index=initial_index,
          topk=4,
          max_decode_steps=max_decode_steps)

    # `inputs[2]` starts from index 0. So it requires 3 calls to
    # `token_to_logits` to exit the prompt (these generated tokens are
    # overridden) and 4 more calls to fill the rest. `inputs[0]` only need 4
    # calls. In the last 3 calls, it generates but MUST NOT populate the
    # sequences because it is already ended.
    self.assertLen(token_to_logits.call_args_list, 7)
    expected_output = np.array(
        [[2, 3, 3, 3, 3, 0, 0, 0], [2, 2, 2, 2, 2, 2, 3, 3],
         [2, 2, 2, 3, 3, 3, 3, 0]],
        dtype=np.int32)
    expected_output = jnp.expand_dims(expected_output, 1)

    np.testing.assert_array_equal(decodes, expected_output)
    np.testing.assert_allclose(scores, [[0.], [0.], [0.]])

  def test_temperature_sample_max_decode_steps_docstring_ex4(self):
    max_decode_steps = 2
    rng0 = jax.random.PRNGKey(0)
    inputs = np.array([[0, 2, 0, 0, 0, 0, 0, 0], [0, 3, 4, 0, 0, 0, 0, 0]],
                      dtype=np.int32)
    initial_index = np.array([1, 2])

    token_to_logits = mock.Mock()
    token_to_logits.return_value = (np.array(
        [[-1e7, -1e7, 0, -1e7], [-1e7, -1e7, -1e7, 0]], dtype=np.float32), {})

    # to unroll while loop
    with jax.disable_jit():
      decodes, _ = decoding.temperature_sample(
          inputs, {},
          token_to_logits,
          EOS_ID,
          rng0,
          initial_index=initial_index,
          topk=4,
          max_decode_steps=max_decode_steps)
    self.assertLen(token_to_logits.call_args_list, 2)
    expected_output = np.array(
        [[2, 2, 2, 0, 0, 0, 0, 0], [3, 4, 3, 3, 0, 0, 0, 0]], dtype=np.int32)
    expected_output = jnp.expand_dims(expected_output, 1)

    np.testing.assert_array_equal(decodes, expected_output)

  def test_temperature_sample_max_decode_steps_hard_limit(self):
    max_decode_steps = 10
    max_decode_steps_hard_limit = 4
    rng0 = jax.random.PRNGKey(0)
    inputs = np.array([[0, 2, 0, 0, 0, 0, 0, 0], [0, 2, 2, 0, 0, 0, 0, 0]],
                      dtype=np.int32)

    token_to_logits = mock.Mock()
    token_to_logits.return_value = (np.array(
        [[-1e7, -1e7, -1e7, 0], [-1e7, -1e7, -1e7, 0]], dtype=np.float32), {})

    # to unroll while loop
    with jax.disable_jit():
      decodes, scores = decoding.temperature_sample(
          inputs, {},
          token_to_logits,
          EOS_ID,
          rng0,
          topk=4,
          max_decode_steps=max_decode_steps,
          max_decode_steps_hard_limit=max_decode_steps_hard_limit)

    expected_output = np.array([[2, 3, 3, 3, 3, 0, 0, 0],
                                [2, 2, 3, 3, 3, 3, 0, 0]])
    expected_output = jnp.expand_dims(expected_output, 1)

    np.testing.assert_array_equal(decodes, expected_output)
    np.testing.assert_array_equal(scores, [[0.], [0.]])

  def test_temperature_sample_topp(self):
    rng0 = jax.random.PRNGKey(0)
    inputs = np.zeros((1, 20), dtype=np.int32)

    token_to_logits = mock.Mock()

    # logits correspond to (0.3, 0, 0.1, 0.6)
    token_to_logits.return_value = (np.array([[-1.2, -1e7, -2.3, -0.51]],
                                             dtype=np.float32), {})

    decodes, scores = decoding.temperature_sample(
        inputs, {}, token_to_logits, EOS_ID, rng0, topp=0.55,
        topk=0)  # anything under 0.6 will trigger deterministic decoding.

    expected_output = np.array([[3] * 20])
    expected_output = jnp.expand_dims(expected_output, 1)

    np.testing.assert_array_equal(decodes, expected_output)
    np.testing.assert_array_equal(scores, [[0.]])

    # temperature is applied first, so the distribution becomes
    # (0.27, 0, 0.069, 0.65), so if topp is 0.63, it should become greedy.
    decodes, scores = decoding.temperature_sample(
        inputs, {},
        token_to_logits,
        EOS_ID,
        rng0,
        temperature=0.8,
        topp=0.63,
        topk=0)

    expected_output = np.array([[3] * 20])
    expected_output = jnp.expand_dims(expected_output, 1)

    np.testing.assert_array_equal(decodes, expected_output)
    np.testing.assert_array_equal(scores, [[0.]])

  def test_dynamic_topp_max_decode_steps(self):
    rng0 = jax.random.PRNGKey(0)
    inputs = np.zeros((1, 20), dtype=np.int32)

    token_to_logits = mock.Mock()

    # logits correspond to (0.3, 0, 0.1, 0.6)
    token_to_logits.return_value = (np.array([[-1.2, -1e7, -2.3, -0.51]],
                                             dtype=np.float32), {})

    def dynamic_decode_fn(inputs, temperature, topp, max_decode_steps):
      return decoding.temperature_sample(
          inputs, {},
          token_to_logits,
          EOS_ID,
          rng0,
          temperature=temperature,
          topp=topp,
          topk=0,
          max_decode_steps=max_decode_steps)

    dynamic_decode_fn_jit = jax.jit(dynamic_decode_fn)

    decodes, scores = dynamic_decode_fn_jit(inputs, 0.8, 0.63, 10)

    expected_output = np.array([[3] * 10 + [0] * 10])
    expected_output = jnp.expand_dims(expected_output, 1)

    np.testing.assert_array_equal(decodes, expected_output)
    np.testing.assert_array_equal(scores, [[0.]])

  def test_topp_log_probs(self):
    rng0 = jax.random.PRNGKey(0)
    inputs = np.zeros((1, 1), dtype=np.int32)

    token_to_logits = mock.Mock()

    # logits correspond to (0.3, 0, 0.1, 0.6)
    token_to_logits.return_value = (np.array([[-1.2, NEG_INF, -2.3, -0.51]],
                                             dtype=np.float32), {})

    with jax.disable_jit():
      # this lets us see logits after topp and topk are applied
      with mock.patch.object(jax.random, 'categorical') as mocked:
        mocked.return_value = jnp.array([0], dtype=jnp.int32)
        decodes, _ = decoding.temperature_sample(
            inputs, {},
            token_to_logits,
            EOS_ID,
            rng0,
            temperature=1.4,
            topp=0.7,
            topk=0)

    self.assertLen(token_to_logits.call_args_list, 1)
    np.testing.assert_array_equal(decodes, jnp.asarray([[[0]]]))

    np.testing.assert_array_almost_equal(
        mocked.call_args_list[0][0][1],
        jnp.asarray([[-0.85714293, NEG_INF, NEG_INF, -0.36428571]]))

  def test_add_beam_dim(self):
    x = np.array([[0, 5, 1, 0], [0, 8, 6, 9]], dtype=np.int32)
    y = decoding.add_beam_dim(x, beam_size=3)
    self.assertEqual(y.shape, (2, 3, 4))
    np.testing.assert_array_equal([[[0, 5, 1, 0], [0, 5, 1, 0], [0, 5, 1, 0]],
                                   [[0, 8, 6, 9], [0, 8, 6, 9], [0, 8, 6, 9]]],
                                  y)

  def test_flat_batch_beam_expand(self):
    x = np.array([[0, 5, 1, 0], [0, 8, 6, 9]], dtype=np.int32)
    np.testing.assert_array_equal(
        [[0, 5, 1, 0], [0, 5, 1, 0], [0, 8, 6, 9], [0, 8, 6, 9]],
        decoding.flat_batch_beam_expand(x, beam_size=2))

  def test_top_k_two_stage(self):

    def _test_top_k(batch_size, k):
      # Pick sufficiently large seq_len.
      seq_len = 2047 * k * batch_size
      seq = np.arange(seq_len)
      np.random.shuffle(seq)
      x = jnp.reshape(seq, (batch_size, int(seq_len / batch_size))).astype(
          jnp.float32)
      np.testing.assert_almost_equal(
          decoding.top_k_two_stage(x, k), jax.lax.top_k(x, k), decimal=5)

    # Test small batch cases (batch={1,8}, k=16).
    _test_top_k(1, 16)
    _test_top_k(8, 16)
    # Test large batch cases (batch={9,32}, k=11).
    _test_top_k(9, 11)
    _test_top_k(32, 11)

  def test_cache_map(self):
    cache = {
        'layers_0': {
            'cached_key': jnp.ones([3, 6]),
            'cached_values': jnp.ones([3, 6]),
            'cache_index': jnp.ones([
                3,
            ]),
        },
        'layers_1': {
            'self_attention': {
                'cached_key': jnp.ones([2, 7]),
                'cached_values': jnp.ones([5, 8]),
                'cache_index': jnp.array(1),
            },
            'encoder_decoder_attention': {
                'cached_key': jnp.ones([10, 12, 2]),
                'cached_values': jnp.ones([4, 7, 2]),
                'cache_index': jnp.ones([4, 5, 6]),
            }
        },
    }

    fn = functools.partial(jnp.add, 4)

    gold_cache = {
        'layers_0': {
            'cached_key': fn(jnp.ones([3, 6])),
            'cached_values': fn(jnp.ones([3, 6])),
            'cache_index': jnp.ones([
                3,
            ]),
        },
        'layers_1': {
            'self_attention': {
                'cached_key': fn(jnp.ones([2, 7])),
                'cached_values': fn(jnp.ones([5, 8])),
                'cache_index': jnp.array(1),
            },
            'encoder_decoder_attention': {
                'cached_key': fn(jnp.ones([10, 12, 2])),
                'cached_values': fn(jnp.ones([4, 7, 2])),
                'cache_index': jnp.ones([4, 5, 6]),
            }
        }
    }

    jax.tree_multimap(np.testing.assert_array_equal,
                      decoding.cache_map(fn, cache), gold_cache)

  def test_cache_map_with_index(self):
    cache = {
        'layers_0': {
            'cached_key': jnp.ones([3, 6]),
            'cached_values': jnp.ones([3, 6]),
            'cache_index': jnp.ones([
                3,
            ]),
        },
        'layers_1': {
            'relpos_bias': {
                'cached_bias': jnp.ones([1, 5, 3]),
            },
            'self_attention': {
                'cached_key': jnp.ones([2, 7]),
                'cached_values': jnp.ones([5, 8]),
                'cache_index': jnp.array(1),
            },
            'encoder_decoder_attention': {
                'cached_key': jnp.ones([10, 12, 2]),
                'cached_values': jnp.ones([4, 7, 2]),
                'cache_index': jnp.ones([4, 5, 6]),
            }
        },
        'position_embedder': {
            'position_embedder_index': jnp.array(-1),
        },
    }

    fn = functools.partial(jnp.add, 8)

    gold_cache = {
        'layers_0': {
            'cached_key': fn(jnp.ones([3, 6])),
            'cached_values': fn(jnp.ones([3, 6])),
            'cache_index': fn(jnp.ones([
                3,
            ])),
        },
        'layers_1': {
            'relpos_bias': {
                'cached_bias': jnp.ones([1, 5, 3]),
            },
            'self_attention': {
                'cached_key': fn(jnp.ones([2, 7])),
                'cached_values': fn(jnp.ones([5, 8])),
                'cache_index': fn(jnp.array(1)),
            },
            'encoder_decoder_attention': {
                'cached_key': fn(jnp.ones([10, 12, 2])),
                'cached_values': fn(jnp.ones([4, 7, 2])),
                'cache_index': fn(jnp.ones([4, 5, 6])),
            }
        },
        'position_embedder': {
            'position_embedder_index': jnp.array(-1),
        },
    }

    jax.tree_multimap(np.testing.assert_array_equal,
                      decoding.cache_map(fn, cache, apply_to_index=True),
                      gold_cache)

  def test_beam_search(self):
    # Toy problem, we have 4 states, A, B, START, END, (plus PAD).
    # Scores are given by a first-order Markov model.
    batch_size = 2
    beam_size = 2
    # PAD doesn't matter for this test, but part of the contract for beam_search
    # is giving the PAD token id 0.
    states = ['PAD', 'A', 'B', 'START-', '-END']
    num_states = len(states)
    decode_length = 7

    # Edge potentials (written inside edges for diagonals):
    #            1      -1     1      -1
    #         A ---- A ---- A ---- A ---- A
    #       0   \  -1  \  1   \  -1  \  1   0
    # START      X      X      X      X       END
    #       0   /  -1  /  1   /  -1  /  1   0
    #         B ---- B ---- B ---- B ---- B
    #            1      -1     1      -1

    # put the above edge potentials in a 3-tensor
    ab_edge_potentials = np.asarray([[[1, -1], [-1, 1]], [[-1, 1], [1, -1]],
                                     [[1, -1], [-1, 1]], [[-1, 1], [1, -1]]])
    # now we have to add on the START, END states
    # and PAD at 0
    edge_potentials = np.ones([6, 5, 5]) * NEG_INF
    edge_potentials[1:5, 1:3, 1:3] = ab_edge_potentials
    # START can go to either A or B for free at t0
    edge_potentials[0, 3, 1] = 0
    edge_potentials[0, 3, 2] = 0
    # either A or B can go to END for free at t5
    edge_potentials[5, 1, 4] = 0
    edge_potentials[5, 2, 4] = 0
    # PAD can go to anything for free (doesn't matter for this test)
    edge_potentials[:, 0, :] = 0

    edge_potentials = jnp.asarray(edge_potentials)

    # at time 0, we start with state=START=3
    logits0 = jnp.asarray([NEG_INF, NEG_INF, NEG_INF, 0, NEG_INF])

    # add dummy flattened batch x beam dim for broadcasting
    logits0 = jnp.expand_dims(logits0, axis=0)
    edge_potentials = jnp.expand_dims(edge_potentials, axis=0)

    def tokens_to_logits(
        token_indices: jnp.ndarray, state_cache: Mapping[str, jnp.ndarray]
    ) -> Tuple[jnp.ndarray, Mapping[str, jnp.ndarray]]:
      cur_iter = state_cache['cur_iter']
      # grab edge potentials for the current timestep
      cur_edge_potentials = jnp.take_along_axis(
          edge_potentials,
          jnp.reshape(
              jnp.maximum(0, cur_iter[:, 0].astype(jnp.int32) - 1),
              (batch_size * beam_size, 1, 1, 1)),
          axis=1)
      cur_edge_potentials = jnp.squeeze(cur_edge_potentials, axis=1)
      # get "logits" from edge potentials for requested tokens (except at t0)
      cur_logits = jnp.matmul(
          jnp.reshape(
              jax.nn.one_hot(token_indices, num_states, axis=1),
              (batch_size * beam_size, 1, num_states)), cur_edge_potentials)
      cur_logits = jnp.squeeze(cur_logits, axis=1)
      # use our START-only logits for t0, otherwise use the edge potentials
      logits_for_tokens = jnp.where(cur_iter == 0, logits0, cur_logits)
      # update state in the cache
      new_cache = state_cache.copy()
      new_cache['cur_iter'] = cur_iter + 1
      return logits_for_tokens, new_cache

    init_cache = {}
    init_cache['cur_iter'] = jnp.zeros((batch_size, 1))

    top_scoring, _ = decoding.beam_search(
        inputs=np.zeros([batch_size, decode_length]),
        cache=init_cache,
        tokens_to_logits=tokens_to_logits,
        eos_id=4,
        num_decodes=beam_size,
        alpha=0.0,
        max_decode_len=decode_length)

    # The two top scoring sequences should be a tie between
    # START-AABBA-END
    # and
    # START-BBAAB-END
    # (and greedy beam search will find both these with just two beams)

    top_scoring_strings = [
        ''.join(states[tok]
                for tok in top_scoring[0, i, :])
        for i in range(beam_size)
    ]

    expected = ['START-AABBA-END', 'START-BBAAB-END']
    np.testing.assert_array_equal(expected, top_scoring_strings)

  def test_beam_search_force_decode_prefix(self):
    beam_size = 2

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # Use id 2 then 3 for batch element 0 and id 3 then 2 for element 1.
      logits = np.repeat(
          np.expand_dims(
              np.array([[-1e7, -1e10, -0.1, -0.9, -1e4, -1e4, -1e4, -1e4],
                        [-1e7, -1e10, -0.9, -0.1, -1e4, -1e4, -1e4, -1e4]],
                       dtype=np.float32),
              axis=1), [beam_size],
          axis=1)
      logits = decoding.flatten_beam_dim(logits)
      return logits, {}

    # batch element 0 has length 1 and element 1 has length 2.
    inputs = np.array([[0, 7, 0, 0, 0], [0, 4, 5, 0, 0]], dtype=np.int32)
    rolled_inputs = np.array([[7, 0, 0, 0, 0], [4, 5, 0, 0, 0]], dtype=np.int32)
    beam_search_sequences, decoding_scores = decoding.beam_search(
        inputs, {}, token_to_logits, EOS_ID, num_decodes=beam_size, alpha=0)

    # Prefixes are forced depending on inputs.
    # Beam search sequences and corresponding scores are in reverse order.
    self.assertTrue(np.all(np.diff(decoding_scores) >= 0))
    expected = np.array([[[7, 3, 2, 2, 2], [7, 2, 2, 2, 2]],
                         [[4, 5, 2, 3, 3], [4, 5, 3, 3, 3]]])
    np.testing.assert_array_equal(expected, beam_search_sequences)

    expected_scores = []
    batch_logits = np.array([[-1e7, -1e10, -0.1, -0.9, -1e4, -1e4, -1e4, -1e4],
                             [-1e7, -1e10, -0.9, -0.1, -1e4, -1e4, -1e4, -1e4]],
                            dtype=np.float32)
    for batch, logits, prompt in zip(expected, batch_logits, rolled_inputs):
      beam_expected_scores = []
      for beam in batch:
        log_probs = jax.nn.log_softmax(logits)
        # Add them directly since they are static.
        beam_scores = []
        for token, prompt_token in zip(beam, prompt):
          if prompt_token != 0:
            beam_scores.append(0)
          else:
            beam_scores.append(log_probs[token])
        beam_expected_scores.append(sum(beam_scores))
      expected_scores.append(beam_expected_scores)
    np.testing.assert_allclose(expected_scores, decoding_scores, atol=1e-5)

  def test_beam_search_force_decode_no_prefix(self):
    beam_size = 2

    def token_to_logits(ids, cache):  # pylint: disable=unused-argument
      # Use id 2 then 3 for batch element 0 and id 3 then 2 for element 1.
      logits = np.repeat(
          np.expand_dims(
              np.array([[-1e7, -1e10, -0.1, -0.9], [-1e7, -1e10, -0.9, -0.1]],
                       dtype=np.float32),
              axis=1), [beam_size],
          axis=1)
      logits = decoding.flatten_beam_dim(logits)
      return logits, {}

    # No prefix is passed.
    inputs = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=np.int32)
    beam_search_sequences, decoding_scores = decoding.beam_search(
        inputs, {}, token_to_logits, EOS_ID, num_decodes=beam_size)

    # Prefixes are forced depending on inputs.
    # Beam search sequences and corresponding scores are in reverse order.
    self.assertTrue(np.all(np.diff(decoding_scores) >= 0))
    expected = np.array([[[3, 2, 2, 2, 2], [2, 2, 2, 2, 2]],
                         [[2, 3, 3, 3, 3], [3, 3, 3, 3, 3]]])
    np.testing.assert_array_equal(expected, beam_search_sequences)


if __name__ == '__main__':
  absltest.main()