File size: 3,270 Bytes
b100e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Checkpoint helper functions for managing checkpoints.

Supports marking checkpoints as pinned to exclude them from the checkpointer
removal process.
"""

import os

from absl import logging

from tensorflow.io import gfile

# PINNED file in the checkpoint directory indicates that the checkpoint should
# not be removed during the automatic pruning of old checkpoints.
_PINNED_CHECKPOINT_FILENAME = 'PINNED'


def pinned_checkpoint_filepath(ckpt_dir: str) -> str:
  """Full path of the pinned checkpoint file."""
  return os.path.join(ckpt_dir, _PINNED_CHECKPOINT_FILENAME)


def is_pinned_checkpoint(ckpt_dir: str) -> bool:
  """Returns whether the checkpoint is pinned, and should NOT be removed."""
  pinned_ckpt_file = pinned_checkpoint_filepath(ckpt_dir)
  if gfile.exists(pinned_ckpt_file):
    return True
  return False


def pin_checkpoint(ckpt_dir: str, txt: str = '1') -> None:
  """Pin a checkpoint so it does not get deleted by the normal pruning process.

  Creates a PINNED file in the checkpoint directory to indicate the checkpoint
  should be excluded from the deletion of old checkpoints.

  Args:
    ckpt_dir: The checkpoint step dir that is to be always kept.
    txt: Text to be written into the checkpoints ALWAYS_KEEP me file.
  """
  pinned_ckpt_file = pinned_checkpoint_filepath(ckpt_dir)
  with gfile.GFile(pinned_ckpt_file, 'w') as f:
    logging.debug('Write %s file : %s.', pinned_ckpt_file, txt)
    f.write(txt)


def unpin_checkpoint(ckpt_dir: str) -> None:
  """Removes the pinned status of the checkpoint so it is open for deletion."""
  if not is_pinned_checkpoint(ckpt_dir):
    logging.debug('%s is not PINNED. Nothing to do here.', ckpt_dir)
    return
  try:
    pinned_ckpt_file = pinned_checkpoint_filepath(ckpt_dir)
    logging.debug('Remove %s file.', pinned_ckpt_file)
    gfile.rmtree(pinned_ckpt_file)
  except IOError:
    logging.exception('Failed to unpin %s', ckpt_dir)


def remove_checkpoint_dir(ckpt_dir: str) -> None:
  """Removes the checkpoint dir if it is not pinned."""
  if not is_pinned_checkpoint(ckpt_dir):
    logging.info('Deleting checkpoint: %s', ckpt_dir)
    gfile.rmtree(ckpt_dir)
  else:
    logging.info('Keeping pinned checkpoint: %s', ckpt_dir)


def remove_dataset_checkpoint(ckpt_dir: str, train_ds_prefix: str) -> None:
  """Removes dataset checkpoints if the checkpoint is not pinned."""
  if not is_pinned_checkpoint(ckpt_dir):
    train_ds_pattern = os.path.join(ckpt_dir, train_ds_prefix + '*')
    logging.info('Deleting dataset checkpoint: %s', train_ds_pattern)
    for file in gfile.glob(train_ds_pattern):
      gfile.remove(file)
  else:
    logging.info('Keeping pinned checkpoint: %s', ckpt_dir)