Spaces:
Build error
Build error
File size: 7,437 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Copyright 2022 The MT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for transcription metrics."""
import collections
import functools
from typing import Any, Callable, Mapping, Optional, Sequence, Tuple, TypeVar
from mt3 import event_codec
from mt3 import note_sequences
from mt3 import run_length_encoding
import note_seq
import numpy as np
import pretty_midi
import sklearn
S = TypeVar('S')
T = TypeVar('T')
CombineExamplesFunctionType = Callable[[Sequence[Mapping[str, Any]]],
Mapping[str, Any]]
def _group_predictions_by_id(
predictions: Sequence[Mapping[str, T]]
) -> Mapping[str, Sequence[T]]:
predictions_by_id = collections.defaultdict(list)
for pred in predictions:
predictions_by_id[pred['unique_id']].append(pred)
return predictions_by_id
def combine_predictions_by_id(
predictions: Sequence[Mapping[str, Any]],
combine_predictions_fn: CombineExamplesFunctionType
) -> Mapping[str, Mapping[str, Any]]:
"""Concatenate predicted examples, grouping by ID and sorting by time."""
predictions_by_id = _group_predictions_by_id(predictions)
return {
id: combine_predictions_fn(preds)
for id, preds in predictions_by_id.items()
}
def decode_and_combine_predictions(
predictions: Sequence[Mapping[str, Any]],
init_state_fn: Callable[[], S],
begin_segment_fn: Callable[[S], None],
decode_tokens_fn: Callable[[S, Sequence[int], int, Optional[int]],
Tuple[int, int]],
flush_state_fn: Callable[[S], T]
) -> Tuple[T, int, int]:
"""Decode and combine a sequence of predictions to a full result.
For time-based events, this usually means concatenation.
Args:
predictions: List of predictions, each of which is a dictionary containing
estimated tokens ('est_tokens') and start time ('start_time') fields.
init_state_fn: Function that takes no arguments and returns an initial
decoding state.
begin_segment_fn: Function that updates the decoding state at the beginning
of a segment.
decode_tokens_fn: Function that takes a decoding state, estimated tokens
(for a single segment), start time, and max time, and processes the
tokens, updating the decoding state in place. Also returns the number of
invalid and dropped events for the segment.
flush_state_fn: Function that flushes the final decoding state into the
result.
Returns:
result: The full combined decoding.
total_invalid_events: Total number of invalid event tokens across all
predictions.
total_dropped_events: Total number of dropped event tokens across all
predictions.
"""
sorted_predictions = sorted(predictions, key=lambda pred: pred['start_time'])
state = init_state_fn()
total_invalid_events = 0
total_dropped_events = 0
for pred_idx, pred in enumerate(sorted_predictions):
begin_segment_fn(state)
# Depending on the audio token hop length, each symbolic token could be
# associated with multiple audio frames. Since we split up the audio frames
# into segments for prediction, this could lead to overlap. To prevent
# overlap issues, ensure that the current segment does not make any
# predictions for the time period covered by the subsequent segment.
max_decode_time = None
if pred_idx < len(sorted_predictions) - 1:
max_decode_time = sorted_predictions[pred_idx + 1]['start_time']
invalid_events, dropped_events = decode_tokens_fn(
state, pred['est_tokens'], pred['start_time'], max_decode_time)
total_invalid_events += invalid_events
total_dropped_events += dropped_events
return flush_state_fn(state), total_invalid_events, total_dropped_events
def event_predictions_to_ns(
predictions: Sequence[Mapping[str, Any]], codec: event_codec.Codec,
encoding_spec: note_sequences.NoteEncodingSpecType
) -> Mapping[str, Any]:
"""Convert a sequence of predictions to a combined NoteSequence."""
ns, total_invalid_events, total_dropped_events = decode_and_combine_predictions(
predictions=predictions,
init_state_fn=encoding_spec.init_decoding_state_fn,
begin_segment_fn=encoding_spec.begin_decoding_segment_fn,
decode_tokens_fn=functools.partial(
run_length_encoding.decode_events,
codec=codec,
decode_event_fn=encoding_spec.decode_event_fn),
flush_state_fn=encoding_spec.flush_decoding_state_fn)
# Also concatenate raw inputs from all predictions.
sorted_predictions = sorted(predictions, key=lambda pred: pred['start_time'])
raw_inputs = np.concatenate(
[pred['raw_inputs'] for pred in sorted_predictions], axis=0)
start_times = [pred['start_time'] for pred in sorted_predictions]
return {
'raw_inputs': raw_inputs,
'start_times': start_times,
'est_ns': ns,
'est_invalid_events': total_invalid_events,
'est_dropped_events': total_dropped_events,
}
def get_prettymidi_pianoroll(ns: note_seq.NoteSequence, fps: float,
is_drum: bool):
"""Convert NoteSequence to pianoroll through pretty_midi."""
for note in ns.notes:
if is_drum or note.end_time - note.start_time < 0.05:
# Give all drum notes a fixed length, and all others a min length
note.end_time = note.start_time + 0.05
pm = note_seq.note_sequence_to_pretty_midi(ns)
end_time = pm.get_end_time()
cc = [
# all sound off
pretty_midi.ControlChange(number=120, value=0, time=end_time),
# all notes off
pretty_midi.ControlChange(number=123, value=0, time=end_time)
]
pm.instruments[0].control_changes = cc
if is_drum:
# If inst.is_drum is set, pretty_midi will return an all zero pianoroll.
for inst in pm.instruments:
inst.is_drum = False
pianoroll = pm.get_piano_roll(fs=fps)
return pianoroll
def frame_metrics(ref_pianoroll: np.ndarray,
est_pianoroll: np.ndarray,
velocity_threshold: int) -> Tuple[float, float, float]:
"""Frame Precision, Recall, and F1."""
# Pad to same length
if ref_pianoroll.shape[1] > est_pianoroll.shape[1]:
diff = ref_pianoroll.shape[1] - est_pianoroll.shape[1]
est_pianoroll = np.pad(est_pianoroll, [(0, 0), (0, diff)], mode='constant')
elif est_pianoroll.shape[1] > ref_pianoroll.shape[1]:
diff = est_pianoroll.shape[1] - ref_pianoroll.shape[1]
ref_pianoroll = np.pad(ref_pianoroll, [(0, 0), (0, diff)], mode='constant')
# For ref, remove any notes that are too quiet (consistent with Cerberus.)
ref_frames_bool = ref_pianoroll > velocity_threshold
# For est, keep all predicted notes.
est_frames_bool = est_pianoroll > 0
precision, recall, f1, _ = sklearn.metrics.precision_recall_fscore_support(
ref_frames_bool.flatten(),
est_frames_bool.flatten(),
labels=[True, False])
return precision[0], recall[0], f1[0]
|