Spaces:
Build error
Build error
File size: 29,466 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for attention classes."""
import dataclasses
from typing import Optional
from unittest import mock
from absl.testing import absltest
from absl.testing import parameterized
from flax import linen as nn
from flax.core import freeze
from flax.linen import partitioning as nn_partitioning
import jax
from jax import random
from jax.nn import initializers
import jax.numpy as jnp
import numpy as np
from t5x.examples.decoder_only import layers
# Parse absl flags test_srcdir and test_tmpdir.
jax.config.parse_flags_with_absl()
Array = jnp.ndarray
AxisMetadata = nn_partitioning.AxisMetadata # pylint: disable=invalid-name
class SelfAttention(layers.MultiHeadDotProductAttention):
"""Self-attention special case of multi-head dot-product attention."""
@nn.compact
def __call__(self,
inputs_q: Array,
mask: Optional[Array] = None,
bias: Optional[Array] = None,
deterministic: bool = False):
return super().__call__(
inputs_q, inputs_q, mask, bias, deterministic=deterministic)
@dataclasses.dataclass(frozen=True)
class SelfAttentionArgs:
num_heads: int = 1
batch_size: int = 2
# qkv_features: int = 3
head_dim: int = 3
# out_features: int = 4
q_len: int = 5
features: int = 6
dropout_rate: float = 0.1
deterministic: bool = False
decode: bool = False
float32_logits: bool = False
def __post_init__(self):
# If we are doing decoding, the query length should be 1, because are doing
# autoregressive decoding where we feed one position at a time.
assert not self.decode or self.q_len == 1
def init_args(self):
return dict(
num_heads=self.num_heads,
head_dim=self.head_dim,
dropout_rate=self.dropout_rate,
float32_logits=self.float32_logits)
def apply_args(self):
inputs_q = jnp.ones((self.batch_size, self.q_len, self.features))
mask = jnp.ones((self.batch_size, self.num_heads, self.q_len, self.q_len))
bias = jnp.ones((self.batch_size, self.num_heads, self.q_len, self.q_len))
return {
'inputs_q': inputs_q,
'mask': mask,
'bias': bias,
'deterministic': self.deterministic
}
class AttentionTest(parameterized.TestCase):
def test_dot_product_attention_shape(self):
# This test only checks for shape but tries to make sure all code paths are
# reached.
dropout_rng = random.PRNGKey(0)
batch_size, num_heads, q_len, kv_len, qk_depth, v_depth = 1, 2, 3, 4, 5, 6
query = jnp.ones((batch_size, q_len, num_heads, qk_depth))
key = jnp.ones((batch_size, kv_len, num_heads, qk_depth))
value = jnp.ones((batch_size, kv_len, num_heads, v_depth))
bias = jnp.ones((batch_size, num_heads, q_len, kv_len))
args = dict(
query=query,
key=key,
value=value,
bias=bias,
dropout_rng=dropout_rng,
dropout_rate=0.5,
deterministic=False,
)
output = layers.dot_product_attention(**args)
self.assertEqual(output.shape, (batch_size, q_len, num_heads, v_depth))
def test_make_attention_mask_multiply_pairwise_fn(self):
decoder_target_tokens = jnp.array([[7, 0, 0], [8, 5, 0]])
attention_mask = layers.make_attention_mask(
decoder_target_tokens > 0, decoder_target_tokens > 0, dtype=jnp.int32)
expected0 = jnp.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]])
expected1 = jnp.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]])
self.assertEqual(attention_mask.shape, (2, 1, 3, 3))
np.testing.assert_array_equal(attention_mask[0, 0], expected0)
np.testing.assert_array_equal(attention_mask[1, 0], expected1)
def test_make_attention_mask_equal_pairwise_fn(self):
segment_ids = jnp.array([[1, 1, 2, 2, 2, 0], [1, 1, 1, 2, 0, 0]])
attention_mask = layers.make_attention_mask(
segment_ids, segment_ids, pairwise_fn=jnp.equal, dtype=jnp.int32)
# Padding is not treated in a special way. So they need to be zeroed out
# separately.
expected0 = jnp.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1]])
expected1 = jnp.array([[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1]])
self.assertEqual(attention_mask.shape, (2, 1, 6, 6))
np.testing.assert_array_equal(attention_mask[0, 0], expected0)
np.testing.assert_array_equal(attention_mask[1, 0], expected1)
def test_make_causal_mask_with_padding(self):
x = jnp.array([[7, 0, 0], [8, 5, 0]])
y = layers.make_causal_mask(x)
self.assertEqual(y.shape, (2, 1, 3, 3))
# Padding is not treated in a special way. So they need to be zeroed out
# separately.
expected_y = jnp.array([[[1., 0., 0.], [1., 1., 0.], [1., 1., 1.]]],
jnp.float32)
np.testing.assert_allclose(y[0], expected_y)
np.testing.assert_allclose(y[1], expected_y)
def test_make_causal_mask_extra_batch_dims(self):
x = jnp.ones((3, 3, 5))
y = layers.make_causal_mask(x, extra_batch_dims=2)
self.assertEqual(y.shape, (1, 1, 3, 3, 1, 5, 5))
def test_make_causal_mask(self):
x = jnp.ones((1, 3))
y = layers.make_causal_mask(x)
self.assertEqual(y.shape, (1, 1, 3, 3))
expected_y = jnp.array([[[[1., 0., 0.], [1., 1., 0.], [1., 1., 1.]]]],
jnp.float32)
np.testing.assert_allclose(y, expected_y)
def test_combine_masks(self):
masks = [
jnp.array([0, 1, 0, 1], jnp.float32), None,
jnp.array([1, 1, 1, 1], jnp.float32),
jnp.array([1, 1, 1, 0], jnp.float32)
]
y = layers.combine_masks(*masks)
np.testing.assert_allclose(y, jnp.array([0, 1, 0, 0], jnp.float32))
def test_combine_biases(self):
masks = [
jnp.array([0, 1, 0, 1], jnp.float32), None,
jnp.array([0, 1, 1, 1], jnp.float32),
jnp.array([0, 1, 1, 0], jnp.float32)
]
y = layers.combine_biases(*masks)
np.testing.assert_allclose(y, jnp.array([0, 3, 2, 2], jnp.float32))
def test_make_decoder_mask_lm_unpacked(self):
decoder_target_tokens = jnp.array([6, 7, 3, 0])
mask = layers.make_decoder_mask(
decoder_target_tokens=decoder_target_tokens, dtype=jnp.float32)
expected_mask = jnp.array([[[1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0],
[0, 0, 0, 0]]])
np.testing.assert_array_equal(mask, expected_mask)
def test_make_decoder_mask_lm_packed(self):
decoder_target_tokens = jnp.array([[6, 7, 3, 4, 5, 0]])
decoder_segment_ids = jnp.array([[1, 1, 1, 2, 2, 0]])
mask = layers.make_decoder_mask(
decoder_target_tokens=decoder_target_tokens,
dtype=jnp.float32,
decoder_segment_ids=decoder_segment_ids)
expected_mask = jnp.array([[[[1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0]]]])
np.testing.assert_array_equal(mask, expected_mask)
def test_make_decoder_mask_prefix_lm_unpacked(self):
decoder_target_tokens = jnp.array([[5, 6, 7, 3, 4, 0]])
decoder_causal_attention = jnp.array([[1, 1, 1, 0, 0, 0]])
mask = layers.make_decoder_mask(
decoder_target_tokens=decoder_target_tokens,
dtype=jnp.float32,
decoder_causal_attention=decoder_causal_attention)
expected_mask = jnp.array(
[[[[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0]]]],
dtype=jnp.float32)
np.testing.assert_array_equal(mask, expected_mask)
def test_make_decoder_mask_prefix_lm_packed(self):
decoder_target_tokens = jnp.array([[5, 6, 7, 8, 3, 4, 0]])
decoder_segment_ids = jnp.array([[1, 1, 1, 2, 2, 2, 0]])
decoder_causal_attention = jnp.array([[1, 1, 0, 1, 1, 0, 0]])
mask = layers.make_decoder_mask(
decoder_target_tokens=decoder_target_tokens,
dtype=jnp.float32,
decoder_causal_attention=decoder_causal_attention,
decoder_segment_ids=decoder_segment_ids)
expected_mask = jnp.array([[[[1, 1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]]]])
np.testing.assert_array_equal(mask, expected_mask)
def test_make_decoder_mask_prefix_lm_unpacked_multiple_elements(self):
decoder_target_tokens = jnp.array([[6, 7, 3, 0], [4, 5, 0, 0]])
decoder_causal_attention = jnp.array([[1, 1, 0, 0], [1, 0, 0, 0]])
mask = layers.make_decoder_mask(
decoder_target_tokens=decoder_target_tokens,
dtype=jnp.float32,
decoder_causal_attention=decoder_causal_attention)
expected_mask0 = jnp.array([[1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0],
[0, 0, 0, 0]])
expected_mask1 = jnp.array([[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0],
[0, 0, 0, 0]])
self.assertEqual(mask.shape, (2, 1, 4, 4))
np.testing.assert_array_equal(mask[0, 0], expected_mask0)
np.testing.assert_array_equal(mask[1, 0], expected_mask1)
def test_make_decoder_mask_composite_causal_attention(self):
decoder_target_tokens = jnp.array([[6, 7, 3, 4, 8, 9, 0]])
decoder_causal_attention = jnp.array([[1, 1, 0, 0, 1, 1, 0]])
mask = layers.make_decoder_mask(
decoder_target_tokens=decoder_target_tokens,
dtype=jnp.float32,
decoder_causal_attention=decoder_causal_attention)
expected_mask0 = jnp.array([[1, 1, 0, 0, 1, 1, 0], [1, 1, 0, 0, 1, 1, 0],
[1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])
self.assertEqual(mask.shape, (1, 1, 7, 7))
np.testing.assert_array_equal(mask[0, 0], expected_mask0)
def test_make_decoder_mask_composite_causal_attention_packed(self):
decoder_target_tokens = jnp.array([[6, 7, 3, 4, 8, 9, 2, 3, 4]])
decoder_segment_ids = jnp.array([[1, 1, 1, 1, 1, 1, 2, 2, 2]])
decoder_causal_attention = jnp.array([[1, 1, 0, 0, 1, 1, 1, 1, 0]])
mask = layers.make_decoder_mask(
decoder_target_tokens=decoder_target_tokens,
dtype=jnp.float32,
decoder_causal_attention=decoder_causal_attention,
decoder_segment_ids=decoder_segment_ids)
expected_mask0 = jnp.array([[1, 1, 0, 0, 1, 1, 0, 0, 0],
[1, 1, 0, 0, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 1]])
self.assertEqual(mask.shape, (1, 1, 9, 9))
np.testing.assert_array_equal(mask[0, 0], expected_mask0)
@parameterized.parameters({'f': 20}, {'f': 22})
def test_multihead_dot_product_attention(self, f):
# b: batch, f: emb_dim, q: q_len, k: kv_len, h: num_head, d: head_dim
b, q, h, d, k = 2, 3, 4, 5, 6
base_args = SelfAttentionArgs(num_heads=h, head_dim=d, dropout_rate=0)
args = base_args.init_args()
np.random.seed(0)
inputs_q = np.random.randn(b, q, f)
inputs_kv = np.random.randn(b, k, f)
# Projection: [b, q, f] -> [b, q, h, d]
# So the kernels have to be [f, h, d]
query_kernel = np.random.randn(f, h, d)
key_kernel = np.random.randn(f, h, d)
value_kernel = np.random.randn(f, h, d)
# `out` calculation: [b, q, h, d] -> [b, q, f]
# So kernel has to be [h, d, f]
out_kernel = np.random.randn(h, d, f)
params = {
'query': {
'kernel': query_kernel.reshape(f, -1)
},
'key': {
'kernel': key_kernel.reshape(f, -1)
},
'value': {
'kernel': value_kernel.reshape(f, -1)
},
'out': {
'kernel': out_kernel.reshape(-1, f)
}
}
y = layers.MultiHeadDotProductAttention(**args).apply(
{'params': freeze(params)}, inputs_q, inputs_kv)
query = np.einsum('bqf,fhd->bqhd', inputs_q, query_kernel)
key = np.einsum('bkf,fhd->bkhd', inputs_kv, key_kernel)
value = np.einsum('bkf,fhd->bkhd', inputs_kv, value_kernel)
logits = np.einsum('bqhd,bkhd->bhqk', query, key)
weights = nn.softmax(logits, axis=-1)
combined_value = np.einsum('bhqk,bkhd->bqhd', weights, value)
y_expected = np.einsum('bqhd,hdf->bqf', combined_value, out_kernel)
np.testing.assert_allclose(y, y_expected, rtol=1e-5, atol=1e-5)
def test_multihead_dot_product_attention_caching(self):
# b: batch, f: qkv_features, k: kv_len, h: num_head, d: head_dim
b, h, d, k = 2, 3, 4, 5
f = h * d
base_args = SelfAttentionArgs(num_heads=h, head_dim=d, dropout_rate=0)
args = base_args.init_args()
cache = {
'cached_key': np.zeros((b, h, d, k)),
'cached_value': np.zeros((b, h, d, k)),
'cache_index': np.array(0)
}
inputs_q = np.random.randn(b, 1, f)
inputs_kv = np.random.randn(b, 1, f)
# Mock dense general such that q, k, v projections are replaced by simple
# reshaping.
def mock_dense_general(self, x, **kwargs): # pylint: disable=unused-argument
return x.reshape(b, -1, h, d)
with mock.patch.object(
layers.DenseGeneral, '__call__', new=mock_dense_general):
_, mutated = layers.MultiHeadDotProductAttention(**args).apply(
{'cache': freeze(cache)},
inputs_q,
inputs_kv,
decode=True,
mutable=['cache'])
updated_cache = mutated['cache']
# Perform the same mocked projection to generate the expected cache.
# (key|value): [b, 1, h, d]
key = mock_dense_general(None, inputs_kv)
value = mock_dense_general(None, inputs_kv)
# cached_(key|value): [b, h, d, k]
cache['cached_key'][:, :, :, 0] = key[:, 0, :, :]
cache['cached_value'][:, :, :, 0] = value[:, 0, :, :]
cache['cache_index'] = np.array(1)
for name, array in cache.items():
np.testing.assert_allclose(array, updated_cache[name])
def test_dot_product_attention(self):
# b: batch, f: emb_dim, q: q_len, k: kv_len, h: num_head, d: head_dim
b, q, h, d, k = 2, 3, 4, 5, 6
np.random.seed(0)
query = np.random.randn(b, q, h, d)
key = np.random.randn(b, k, h, d)
value = np.random.randn(b, k, h, d)
bias = np.random.randn(b, h, q, k)
attn_out = layers.dot_product_attention(query, key, value, bias=bias)
logits = np.einsum('bqhd,bkhd->bhqk', query, key)
weights = jax.nn.softmax(logits + bias, axis=-1)
expected = np.einsum('bhqk,bkhd->bqhd', weights, value)
np.testing.assert_allclose(attn_out, expected, atol=1e-6)
def test_multihead_dot_product_attention_prefill_caching(self):
# b: batch, f: qkv_features, k: kv_len, h: num_head, d: head_dim
b, h, d, k = 2, 3, 4, 5
f = h * d
prefill_lengths = np.array([3, 1])
base_args = SelfAttentionArgs(
num_heads=h, head_dim=d, dropout_rate=0)
args = base_args.init_args()
cache = {
'cached_key': np.zeros((b, h, d, k)),
'cached_value': np.zeros((b, h, d, k)),
'cache_index': np.array([0, 0])
}
inputs_q = np.random.randn(b, k, f)
inputs_kv = np.random.randn(b, k, f)
# Mock dense general such that q, k, v projections are replaced by simple
# reshaping.
def mock_dense_general(self, x, **kwargs): # pylint: disable=unused-argument
return x.reshape(b, -1, h, d)
with mock.patch.object(
layers.DenseGeneral, '__call__', new=mock_dense_general):
_, mutated = layers.MultiHeadDotProductAttention(**args).apply(
{'cache': freeze(cache)},
inputs_q,
inputs_kv,
decode=False,
prefill=True,
prefill_lengths=prefill_lengths,
mutable=['cache'])
updated_cache = mutated['cache']
# Perform the same mocked projection to generate the expected cache.
# (key|value): [b, 1, h, d]
key = mock_dense_general(None, inputs_kv)
value = mock_dense_general(None, inputs_kv)
# cached_(key|value): [b, h, d, k]
# Update the our gold cache with the key and values that are part of the
# prefix that we are prefilling the cache with. Explicit loops here avoid a
# confusing transpose.
for b, prefill_length in enumerate(prefill_lengths):
for i in range(prefill_length):
cache['cached_key'][b, :, :, i] = key[b, i, :, :]
cache['cached_value'][b, :, :, i] = value[b, i, :, :]
cache['cache_index'][b] = prefill_length
for name, array in cache.items():
np.testing.assert_allclose(array, updated_cache[name])
class EmbeddingTest(parameterized.TestCase):
def test_embedder_raises_exception_for_incorrect_input_type(self):
"""Tests that inputs are integers and that an exception is raised if not."""
embed = layers.Embed(num_embeddings=10, features=5)
inputs = np.expand_dims(np.arange(5, dtype=np.int64), 1)
variables = embed.init(jax.random.PRNGKey(0), inputs)
bad_inputs = inputs.astype(np.float32)
with self.assertRaisesRegex(
ValueError, 'Input type must be an integer or unsigned integer.'):
_ = embed.apply(variables, bad_inputs)
@parameterized.named_parameters(
{
'testcase_name': 'with_ones',
'init_fn': jax.nn.initializers.ones,
'num_embeddings': 10,
'features': 5,
'matrix_sum': 5 * 10,
}, {
'testcase_name': 'with_zeros',
'init_fn': jax.nn.initializers.zeros,
'num_embeddings': 10,
'features': 5,
'matrix_sum': 0,
})
def test_embedding_initializes_correctly(self, init_fn, num_embeddings,
features, matrix_sum):
"""Tests if the Embed class initializes with the requested initializer."""
embed = layers.Embed(
num_embeddings=num_embeddings,
features=features,
embedding_init=init_fn)
inputs = np.expand_dims(np.arange(5, dtype=np.int64), 1)
variables = embed.init(jax.random.PRNGKey(0), inputs)
embedding_matrix = variables['params']['embedding']
self.assertEqual(int(np.sum(embedding_matrix)), matrix_sum)
def test_embedding_matrix_shape(self):
"""Tests that the embedding matrix has the right shape."""
num_embeddings = 10
features = 5
embed = layers.Embed(num_embeddings=num_embeddings, features=features)
inputs = np.expand_dims(np.arange(features, dtype=np.int64), 1)
variables = embed.init(jax.random.PRNGKey(0), inputs)
embedding_matrix = variables['params']['embedding']
self.assertEqual((num_embeddings, features), embedding_matrix.shape)
def test_embedding_attend(self):
"""Tests that attending with ones returns sum of embedding vectors."""
features = 5
embed = layers.Embed(num_embeddings=10, features=features)
inputs = np.array([[1]], dtype=np.int64)
variables = embed.init(jax.random.PRNGKey(0), inputs)
query = np.ones(features, dtype=np.float32)
result = embed.apply(variables, query, method=embed.attend)
expected = np.sum(variables['params']['embedding'], -1)
np.testing.assert_array_almost_equal(result, expected)
class DenseTest(parameterized.TestCase):
def test_dense_general_no_bias(self):
rng = random.PRNGKey(0)
x = jnp.ones((1, 3))
model = layers.DenseGeneral(
features=4,
kernel_init=initializers.ones,
)
y, _ = model.init_with_output(rng, x)
self.assertEqual(y.shape, (1, 4))
np.testing.assert_allclose(y, np.full((1, 4), 3.))
def test_dense_general_two_features(self):
rng = random.PRNGKey(0)
x = jnp.ones((1, 3))
model = layers.DenseGeneral(
features=(2, 2),
kernel_init=initializers.ones,
)
y, _ = model.init_with_output(rng, x)
# We transform the last input dimension to two output dimensions (2, 2).
np.testing.assert_allclose(y, np.full((1, 2, 2), 3.))
def test_dense_general_two_axes(self):
rng = random.PRNGKey(0)
x = jnp.ones((1, 2, 2))
model = layers.DenseGeneral(
features=3,
axis=(-2, 2), # Note: this is the same as (1, 2).
kernel_init=initializers.ones,
)
y, _ = model.init_with_output(rng, x)
# We transform the last two input dimensions (2, 2) to one output dimension.
np.testing.assert_allclose(y, np.full((1, 3), 4.))
def test_mlp_same_out_dim(self):
module = layers.MlpBlock(
intermediate_dim=4,
activations=('relu',),
kernel_init=nn.initializers.xavier_uniform(),
dtype=jnp.float32,
)
inputs = np.array(
[
# Batch 1.
[[1, 1], [1, 1], [1, 2]],
# Batch 2.
[[2, 2], [3, 1], [2, 2]],
],
dtype=np.float32)
params = module.init(random.PRNGKey(0), inputs, deterministic=True)
self.assertEqual(
jax.tree_map(lambda a: a.tolist(), params), {
'params': {
'wi': {
'kernel': [[
-0.8675811290740967, 0.08417510986328125,
0.022586345672607422, -0.9124102592468262
],
[
-0.19464373588562012, 0.49809837341308594,
0.7808468341827393, 0.9267289638519287
]],
},
'wo': {
'kernel': [[0.01154780387878418, 0.1397249698638916],
[0.974980354309082, 0.5903260707855225],
[-0.05997943878173828, 0.616570234298706],
[0.2934272289276123, 0.8181164264678955]],
},
},
'params_axes': {
'wi': {
'kernel_axes': AxisMetadata(names=('embed', 'mlp')),
},
'wo': {
'kernel_axes': AxisMetadata(names=('mlp', 'embed')),
},
},
})
result = module.apply(params, inputs, deterministic=True)
np.testing.assert_allclose(
result.tolist(),
[[[0.5237172245979309, 0.8508185744285583],
[0.5237172245979309, 0.8508185744285583],
[1.2344461679458618, 2.3844780921936035]],
[[1.0474344491958618, 1.7016371488571167],
[0.6809444427490234, 0.9663378596305847],
[1.0474344491958618, 1.7016371488571167]]],
rtol=1e-6,
)
class RelativePositionBiasesTest(absltest.TestCase):
def setUp(self):
self.num_heads = 3
self.query_len = 5
self.key_len = 7
self.relative_attention = layers.RelativePositionBiases(
num_buckets=12,
max_distance=10,
num_heads=3,
dtype=jnp.float32,
)
super(RelativePositionBiasesTest, self).setUp()
def test_relative_attention_bidirectional_params(self):
"""Tests that bidirectional relative position biases have expected params."""
params = self.relative_attention.init(
random.PRNGKey(0), self.query_len, self.key_len, bidirectional=True)
param_shapes = jax.tree_map(lambda x: x.shape, params)
self.assertEqual(
param_shapes, {
'params': {
'rel_embedding': (3, 12),
},
'params_axes': {
'rel_embedding_axes':
AxisMetadata(names=('heads', 'relpos_buckets')),
}
})
def test_regression_relative_attention_bidirectional_values(self):
"""Tests that bidirectional relative position biases match expected values.
See top docstring note on matching T5X behavior for these regression tests.
"""
outputs, unused_params = self.relative_attention.init_with_output(
random.PRNGKey(0), self.query_len, self.key_len, bidirectional=True)
self.assertEqual(outputs.shape,
(1, self.num_heads, self.query_len, self.key_len))
self.assertAlmostEqual(outputs[0, 0, 0, 0], 0.55764728, places=5)
self.assertAlmostEqual(outputs[0, 1, 2, 1], -0.10935841, places=5)
self.assertAlmostEqual(outputs[0, 1, 4, 6], 0.14510104, places=5)
self.assertAlmostEqual(outputs[0, 2, 4, 6], -0.36783996, places=5)
def test_relative_attention_unidirectional_params(self):
"""Tests that unidirectional relative position biases have expected params."""
params = self.relative_attention.init(
random.PRNGKey(0), self.query_len, self.key_len, bidirectional=False)
param_shapes = jax.tree_map(lambda x: x.shape, params)
self.assertEqual(
param_shapes, {
'params': {
'rel_embedding': (3, 12),
},
'params_axes': {
'rel_embedding_axes':
AxisMetadata(names=('heads', 'relpos_buckets')),
}
})
def test_regression_relative_attention_unidirectional_values(self):
"""Tests that unidirectional relative position biases match expected values.
See top docstring note on matching T5X behavior for these regression tests.
"""
outputs, unused_params = self.relative_attention.init_with_output(
random.PRNGKey(0), self.query_len, self.key_len, bidirectional=False)
self.assertEqual(outputs.shape,
(1, self.num_heads, self.query_len, self.key_len))
self.assertAlmostEqual(outputs[0, 0, 0, 0], 0.55764728, places=5)
self.assertAlmostEqual(outputs[0, 1, 2, 1], -0.10935841, places=5)
self.assertAlmostEqual(outputs[0, 1, 4, 6], -0.13101986, places=5)
self.assertAlmostEqual(outputs[0, 2, 4, 6], 0.39296466, places=5)
def test_relative_attention_decode_cache_error_with_init(self):
"""Tests that relative embedding init fails with decode == True."""
with self.assertRaisesRegex(
ValueError,
'decode-mode cannot be enabled during init. use model.apply to '
'initialize the decoding cache.'):
self.relative_attention.init(
jax.random.PRNGKey(0),
self.query_len,
self.key_len,
bidirectional=False,
decode=True)
def test_relative_attention_decode_cache_errror_with_bidirectional(self):
"""Tests that bidirectional relative embeddings fails when decoding."""
params = self.relative_attention.init(
jax.random.PRNGKey(0),
self.query_len,
self.key_len,
bidirectional=False,
decode=False)
with self.assertRaisesRegex(
ValueError,
'bidirectional RelativePositionBiases are not supported when '
'`decode=True`.'):
self.relative_attention.apply(
params,
self.query_len,
self.key_len,
bidirectional=True,
decode=True,
mutable=['cache'])
def test_relative_attention_decode_cache(self):
"""Tests that relative embeddings are correctly cached when decode=True."""
params = self.relative_attention.init(
jax.random.PRNGKey(0),
self.query_len,
self.key_len,
bidirectional=False,
decode=False)
# during init, cache is not actually initialized.
self.assertNotIn('cache', params)
outputs, state = self.relative_attention.apply(
params,
self.query_len,
self.key_len,
bidirectional=False,
decode=True,
mutable=['cache'])
self.assertEqual(outputs.shape,
(1, self.num_heads, self.query_len, self.key_len))
self.assertIn('cached_bias', state['cache'])
cached_bias = state['cache']['cached_bias']
self.assertAlmostEqual(cached_bias[0, 0, 0, 0], 0.55764728, places=5)
self.assertAlmostEqual(cached_bias[0, 1, 2, 1], -0.10935841, places=5)
self.assertAlmostEqual(cached_bias[0, 1, 4, 6], -0.13101986, places=5)
self.assertAlmostEqual(cached_bias[0, 2, 4, 6], 0.39296466, places=5)
np.testing.assert_array_equal(outputs, state['cache']['cached_bias'])
params_with_cache = {
**params,
**state,
}
outputs, state = self.relative_attention.apply(
params_with_cache,
self.query_len,
self.key_len,
bidirectional=False,
decode=True,
mutable=['cache'])
np.testing.assert_array_equal(cached_bias, state['cache']['cached_bias'])
if __name__ == '__main__':
absltest.main()
|