File size: 1,983 Bytes
c970deb
d9489e4
0760318
d9489e4
 
11e63a0
d9489e4
 
 
04107a3
0760318
 
c970deb
 
b487a20
d9489e4
 
 
 
 
 
 
 
 
11e63a0
c9df9d1
d9489e4
 
 
 
 
 
159c013
 
d9489e4
04107a3
 
 
 
 
d9489e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

import collections

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.patches import Rectangle
from PIL import Image

import note_seq
class AudioIOReadError(BaseException):  # pylint:disable=g-bad-exception-name
  pass

def upload_audio(audio, sample_rate):
  return note_seq.audio_io.wav_data_to_samples_librosa(audio, sample_rate=sample_rate)

# Generate piano_roll
def sequence_to_pandas_dataframe(sequence):
    pd_dict = collections.defaultdict(list)
    for note in sequence.notes:
        pd_dict["start_time"].append(note.start_time)
        pd_dict["end_time"].append(note.end_time)
        pd_dict["duration"].append(note.end_time - note.start_time)
        pd_dict["pitch"].append(note.pitch)
        pd_dict["instrument"].append(note.instrument)

    return pd.DataFrame(pd_dict)

def dataframe_to_pianoroll_img(df):
    fig = plt.figure(figsize=(8, 5))
    ax = fig.add_subplot(111)
    ax.scatter(df.start_time, df.pitch, c="white")
    colors = [mcolors.TABLEAU_COLORS[name] for i, name in enumerate(list(mcolors.TABLEAU_COLORS))]
    colordict = {inst: colors[i] for i, inst in enumerate(df["instrument"].unique())}
    for _, row in df.iterrows():
        ax.add_patch(Rectangle((row["start_time"],
                                row["pitch"]-0.4),
                               row["duration"],
                               0.4,
                               color=colordict[row["instrument"]]))
    plt.xlabel('time (sec.)', fontsize=18)
    plt.ylabel('pitch (MIDI)', fontsize=16)
    return fig

def fig2img(fig):
    """Convert a Matplotlib figure to a PIL Image and return it"""
    import io
    buf = io.BytesIO()
    fig.savefig(buf, format="png")
    buf.seek(0)
    img = Image.open(buf)
    return img

def create_image_from_note_sequence(sequence):
    df_sequence = sequence_to_pandas_dataframe(sequence)
    fig = dataframe_to_pianoroll_img(df_sequence)
    img = fig2img(fig)
    return img