Spaces:
Build error
Build error
File size: 39,464 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer and MetricsManager classes for use in train loop.
To create a custom trainer, subclass `BaseTrainer` and implement
`_partitioned_train_step` and `_partitioned_eval_step` methods,
possibly by re-using the utility functions provided in this module.
"""
import abc
import enum
import os
import threading
import time
from typing import Any, Dict, Iterator, Mapping, MutableMapping, Optional, Sequence, TYPE_CHECKING, Tuple, Union
from absl import logging
import cached_property
from clu import asynclib
from clu import metric_writers
import clu.data
import clu.metrics
import clu.values
from flax.core import FrozenDict
from jax.experimental import multihost_utils
import jax.lax
import jax.numpy as jnp
import jax.random
import numpy as np
from t5x import metrics as metrics_lib
from t5x import models
from t5x import partitioning
from t5x import train_state as train_state_lib
from t5x import utils
import typing_extensions
Array = Union[np.ndarray, jnp.ndarray]
BatchSpec = Mapping[str, jax.ShapeDtypeStruct]
BatchType = Mapping[str, np.ndarray]
FlaxMutables = FrozenDict
Rng = jnp.ndarray
MetricMapType = MutableMapping[str, clu.metrics.Metric]
MetricMapSpec = Mapping[str, jax.ShapeDtypeStruct]
MetricValueMapType = Mapping[str, clu.values.Value]
ModelWeights = Any
MutableMetricMapType = Dict[str, clu.metrics.Metric]
PyTreeDef = type(jax.tree_structure(None))
PartitionSpec = partitioning.PartitionSpec
if TYPE_CHECKING: # See b/163639353
cached_property = property # pylint: disable=invalid-name
else:
cached_property = cached_property.cached_property
@jax.jit
def _merge_metrics(a, b):
return jax.tree_multimap(
lambda a, b: a.merge(b), a, b, is_leaf=metrics_lib.is_metric_obj)
# Merges two metrics pytrees (mapping of metric_name (str) to clu.Metric object)
def merge_metrics(a, b):
a, b = jax.tree_map(utils.get_local_data, (a, b))
return _merge_metrics(a, b)
class ArrayMapFuture(typing_extensions.Protocol):
def result(self) -> Mapping[str, Array]:
...
class MetricValueMapFuture(typing_extensions.Protocol):
def result(self) -> Mapping[str, clu.values.Value]:
...
class TimeFuture(typing_extensions.Protocol):
def result(self) -> float:
...
class LearningRateCallable(typing_extensions.Protocol):
def __call__(
self,
step: jnp.ndarray,
) -> jnp.ndarray:
...
class SummarizeMetricsCallable(typing_extensions.Protocol):
"""PyType template for a metrics summary function."""
def __call__(self, metrics: MetricMapType, duration: float,
num_steps: int) -> Mapping[str, jnp.ndarray]:
"""Summarizes metrics accumulated across multiple steps.
Args:
metrics: Metrics accumulated across multiple steps.
duration: The duration of the run being summarized.
num_steps: The number of steps the metrics are accumulated across.
Returns:
Summarized metrics.
"""
...
class PartitionedTrainCallable(typing_extensions.Protocol):
"""Protocol for a partitioned train step."""
def __call__(
self, train_state: train_state_lib.TrainState,
batch: BatchType) -> Tuple[train_state_lib.TrainState, MetricMapType]:
...
class PartitionedEvalCallable(typing_extensions.Protocol):
"""Protocol for a partitioned eval step."""
def __call__(self, train_state: train_state_lib.TrainState,
batch: jnp.ndarray) -> MetricMapType:
...
class WeightMetricsComputer(object):
"""Decides which weight metrics to compute during training."""
_WEIGHT_METRICS = [
"weight_rms", "weight_gradient_rms", "weight_update_rms", "weight_max"
]
@staticmethod
def _make_rms_metrics(name, tree):
"""Calculates the root-mean-square metric for a pytree."""
return {
f"{name}/{k}": metrics_lib.AveragePerStep.from_model_output(
jnp.sqrt(jnp.mean(jnp.square(v))))
for k, v in utils.flatten_dict_string_keys(tree).items()
}
@staticmethod
def _make_max_metrics(name, tree):
"""Calculates the L-inf norm for a pytree."""
return {
f"{name}/{k}":
metrics_lib.AveragePerStep.from_model_output(jnp.max(jnp.abs(v)))
for k, v in utils.flatten_dict_string_keys(tree).items()
}
def compute_metrics(
self, gradients: ModelWeights,
old_train_state: train_state_lib.TrainState,
new_train_state: train_state_lib.TrainState) -> MutableMetricMapType:
"""Compute some metrics about weights after having updating these weights.
Args:
gradients: The gradients of all weights.
old_train_state: The training state before applying the gradients.
new_train_state: The training state after applying the gradients.
Returns:
A dictionary of Metrics, where the keys are either metric names, or of the
form metric_name/parameter_name, depending on whether or not they are
global to the model, or specific to each model parameter.
"""
# TODO(reinerp): Extend weight stats logging with support for non-reduced
# axes of tensors. For example, for stacked layers (QKV stacking or layer
# stacking), we might not want to reduce over the stacking dimension, in
# order to provide more localization in the logged stats.
metrics = {}
metrics.update(self._make_rms_metrics("weight_rms", new_train_state.params))
metrics.update(self._make_rms_metrics("weight_gradient_rms", gradients))
grad_norm = jnp.sqrt(
jnp.sum(
jnp.array([jnp.vdot(x, x) for x in jax.tree_leaves(gradients)])))
metrics.update({
"weight_gradient_norm":
metrics_lib.AveragePerStep.from_model_output(grad_norm)
})
metrics.update(
self._make_rms_metrics(
"weight_update_rms",
jax.tree_multimap(jnp.subtract, new_train_state.params,
old_train_state.params)))
metrics.update(self._make_max_metrics("weight_max", new_train_state.params))
return metrics
class _AsyncTimer(object):
"""A timer that computes computes durations between async jax operations.
You should call close() to wait for threads started by this class to finish.
"""
def __init__(self):
# We use a thread pool with a single worker to ensure that calls to the
# function are run in order (but in a background thread).
self._pool = asynclib.Pool(thread_name_prefix="AsyncTimer", max_workers=1)
self._start_future = None
def close(self):
self._pool.close()
def __del__(self):
self.close()
def _get_completion_future(self, block_on: PyTreeDef = ()) -> TimeFuture:
"""Returns Future containing time when `block_on` is ready."""
def _get_completion_time():
try:
jax.block_until_ready(block_on)
except RuntimeError as e:
# If the buffer no longer exists, we assume it was completed.
if (str(e) !=
"INVALID_ARGUMENT: BlockHostUntilReady() called on deleted or "
"donated buffer"):
raise
return time.time()
return self._pool(_get_completion_time)()
def start(self, block_on: PyTreeDef = ()):
"""Starts timer after `block_on` is ready."""
self._start_future = self._get_completion_future(block_on)
def stop(self, block_on: PyTreeDef = ()) -> TimeFuture:
"""Stops timer after `block_on` is ready, returning the duration."""
if not self._start_future:
raise ValueError("The timer hasn't been started.")
start_future = self._start_future
self._start_future = None
stop_future = self._get_completion_future(block_on)
return self._pool(lambda: stop_future.result() - start_future.result())()
class MetricsManager(object):
"""Manages a set of distributed metrics and their logging.
Logging is disabled on all but host 0.
Logs to:
* TensorBoard
* ABSL
You should call close() to wait for threads started by this class to finish.
"""
def __init__(self, name: str, summary_dir: Optional[str] = None):
"""MetricsManager constructor.
Constructs an empty MetricWriter on all but host 0.
Args:
name: an identifier of the metrics to use when logging (e.g., 'train').
summary_dir: the summary directory. If provided, TensorBoard summaries
will be written to a `name` subdirectory.
"""
self._name = name
if jax.process_index() == 0:
self._writer = metric_writers.create_default_writer(
summary_dir,
collection=name,
asynchronous=True)
else:
self._writer = metric_writers.MultiWriter([])
self.summary_dir = os.path.join(summary_dir, name) if summary_dir else None
self._writer_lock = threading.Lock()
# We use a thread pool with a single worker to ensure that calls to the
# function are run in order (but in a background thread).
self._summary_pool = asynclib.Pool(
thread_name_prefix="MetricsManager", max_workers=1)
# Times the duration between steps.
self._duration_timer = _AsyncTimer()
def __del__(self):
self.close()
def close(self):
try:
self._summary_pool.close()
finally:
try:
self._duration_timer.close()
finally:
if self._writer:
self._writer.close()
self._writer = None
@property
def summary_writer(self) -> metric_writers.MetricWriter:
"""Returns the MetricWriter used by this class."""
# TODO(adarob): Make returned writer threadsafe.
return self._writer
def write_scalar(self, key: str, val: metric_writers.interface.Scalar,
step: int):
"""Writes scalar value to metric writers in a threadsafe manner."""
step = int(utils.get_local_data(step))
self.write_scalars(step, {key: val})
def write_scalars(self, step: int,
scalars: Mapping[str, metric_writers.interface.Scalar]):
"""Writes scalar value to metric writers in a threadsafe manner."""
step = utils.get_local_data(step)
with self._writer_lock:
self._writer.write_scalars(step, scalars)
def start_duration_timer(self, block_on: PyTreeDef = ()):
"""Starts the duration timer."""
self._duration_timer.start(block_on=block_on)
def write_metrics_summary(self, metrics: MetricMapType, step: int,
num_steps: int) -> MetricValueMapFuture:
"""Writes summary based on accumulated metrics in a background thread.
Duration is automatically computed as the interval between completion of
metrics fetching. This closely approximates the duration of `num_steps`,
as the steps must be computes sequentually, and it is more accurate than
computing the time since the call to the step function since its actual
execution occurs asynchronously on the TPU/GPU device.
Args:
metrics: acculumated metric values.
step: the current train step.
num_steps: the number of steps the metrics are accumulated across.
Returns:
A mapping of name -> scalar value of the written summary. Only return the
real scalar value on host 0. For other hosts, return None.
"""
step = utils.get_local_data(step)
# Must be called in the main thread to avoid race condition.
duration_future = self._duration_timer.stop(block_on=metrics)
def _summarize_and_write():
# For thread safety we first copy the metrics to host.
fetched_metrics = jax.tree_map(jax.device_get, metrics)
duration = duration_future.result()
# We set the duration on time-related metrics.
final_metrics = metrics_lib.set_time_metrics_duration(
fetched_metrics, duration)
# Set num_steps for Step metrics (AveragePerStep, StepsPerTime, ...)
final_metrics = metrics_lib.set_step_metrics_num_steps(
final_metrics, num_steps)
# Ensure the metrics are not on device, which could lead to a deadlock.
def _ensure_not_on_device(x):
assert not isinstance(x, jax.numpy.DeviceArray)
jax.tree_map(_ensure_not_on_device, final_metrics)
final_metrics = jax.tree_map(utils.get_local_data, final_metrics)
summary = {k: v.compute_value() for k, v in final_metrics.items()}
with self._writer_lock:
metric_writers.write_values(self._writer, int(step), summary)
return summary
return self._summary_pool(_summarize_and_write)()
def flush(self):
try:
self._summary_pool.join()
finally:
self._writer.flush()
class PreemptionError(Exception):
"""Training has been interrupted and needs an emergency checkpoint."""
class BaseTrainer(abc.ABC):
"""Abstract base trainer class.
Internally this uses MetricsManagers that start threads. You should
use the trainer as a context manager, or call close() directly in
order to wait for these threads to finish after training is done.
"""
def __init__(self, model: models.BaseModel,
train_state: train_state_lib.TrainState,
partitioner: partitioning.BasePartitioner,
eval_names: Sequence[str], summary_dir: Optional[str],
train_state_axes: Any, rng: Rng):
"""Trainer constructor.
Args:
model: the instantiation of `BaseModel` to train.
train_state: A train state with model parameters and optimizer state.
partitioner: the partitioner to use.
eval_names: names of evaluation datasets, which must match the keys of the
mapping passed to `eval`.
summary_dir: optional directory to write TensorBoard metrics to.
train_state_axes: partitioning info for the train state to be used.
rng: jax PRNGKey seed for random operations, to be combined with step
number for a deterministic RNG.
"""
self._model = model
self._train_state_axes = train_state_axes
self._base_rng = rng
self._partitioner = partitioner
self._compiled_train_step: Optional[PartitionedTrainCallable] = None
self._compiled_eval_steps: MutableMapping[str, PartitionedEvalCallable] = {}
self._compiled_eval_step_cache: MutableMapping[
BatchSpec, PartitionedEvalCallable] = {}
self._train_state_mutex = threading.RLock()
self._train_state = train_state
self.stop_training = False
# The training metrics combine metrics added by the Model (e.g., loss and
# accuracy) and Trainer (e.g., learning rate).
self.train_metrics_manager = MetricsManager(
"train", summary_dir=summary_dir)
# The eval metrics only include metrics added by the Model.
self.eval_metrics_managers = { # pylint:disable=g-complex-comprehension
n: MetricsManager(f"training_eval/{n}", summary_dir=summary_dir)
for n in eval_names
}
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
def close(self):
"""Stops all train metric managers threads."""
self.train_metrics_manager.close()
for mm in self.eval_metrics_managers.values():
mm.close()
def _get_step_rng(self, step: int) -> Rng:
return jax.random.fold_in(self._base_rng, step)
@property
def train_state(self):
with self._train_state_mutex:
return self._train_state
@train_state.setter
def train_state(self, train_state: PyTreeDef):
with self._train_state_mutex:
self._train_state = train_state
def train(self,
batch_iter: Union[Iterator[BatchType], clu.data.DatasetIterator],
num_steps: int,
start_step: Optional[int] = None) -> ArrayMapFuture:
"""Runs the train loop for the given number of steps."""
metrics = None
# Use pre-compiled step, if available.
train_step_fn = self._compiled_train_step or self._partitioned_train_step
# We lock `train_state` access during the loop to avoid race conditions.
with self._train_state_mutex:
train_state = self.train_state
# Compute step number on host to avoid communication overhead.
start_step = int(
start_step if start_step is not None else train_state.step)
self.train_metrics_manager.start_duration_timer(block_on=train_state)
for step_num in range(start_step, start_step + num_steps):
logging.log_every_n_seconds(logging.INFO, "Training: step %d", 10,
step_num)
with jax.profiler.StepTraceAnnotation("train", step_num=step_num):
batch = next(batch_iter)
train_state, metrics_update = train_step_fn(train_state, batch)
if metrics:
metrics = merge_metrics(metrics, metrics_update)
else:
metrics = metrics_update
self.train_state = train_state
return self.train_metrics_manager.write_metrics_summary(
metrics, start_step + num_steps, num_steps)
def compile_train(self, batch: BatchType) -> None:
"""Pre-compiles train step (if not yet compiled).
Not required.
If not called before `train`, compilation will occur automatically on the
first step and JAX's "jit cache" will be used to avoid recompilation for
future steps.
Args:
batch: A sample batch that may contain dummy values, but with correct
shapes and dtypes.
"""
tick = time.time()
self._compiled_train_step = self._partitioner.compile(
self._partitioned_train_step, self.train_state, batch)
tock = time.time()
self.train_metrics_manager.write_scalar("timing/compilation_seconds",
tock - tick, self.train_state.step)
def eval(
self, batch_iters: Mapping[str,
Iterator[BatchType]]) -> Mapping[str, Array]:
"""Runs evaluation loop over the iterator and writes summary."""
eval_summaries = {}
train_state = self.train_state
for iter_name, batch_iter in batch_iters.items():
logging.info("Evaluating: %s.", iter_name)
metrics = None
# Use a pre-compiled step function, if available.
eval_step_fn = self._compiled_eval_steps.get(iter_name,
self._partitioned_eval_step)
mm = self.eval_metrics_managers[iter_name]
num_steps = 0
mm.start_duration_timer(block_on=train_state)
for batch in batch_iter:
num_steps += 1
multihost_utils.assert_equal(
jnp.array(num_steps),
"Eval step mismatch across hosts. Check for empty dataset shard.")
metrics_update = eval_step_fn(train_state, batch)
if metrics:
metrics = merge_metrics(metrics, metrics_update)
else:
metrics = metrics_update
multihost_utils.assert_equal(
jnp.array(-1),
"Eval step mismatch across hosts. Check for empty dataset shard.")
eval_summaries[iter_name] = mm.write_metrics_summary(
metrics, train_state.step, num_steps)
# TODO(adarob): Return futures.
return {k: v.result() for k, v in eval_summaries.items()}
def compile_eval(self, batches: Mapping[str, BatchType]) -> None:
"""Pre-compiles eval step (if not yet compiled).
Not required.
Pre-compiles the evaluation step for each evaluation dataset, reusing cached
compilations where possible. In other words, if multiple evaluation datasets
have equivalent shapes/dtypes for the batch and initial metrics,
recompilation will be avoided.
If not called before `eval`, compilation will occur automatically on the
first step and JAX's "jit cache" will be used to avoid recompilation for
future steps.
Args:
batches: a mapping from evaluation dataset name to a sample batch. The
batch may contain dummy values, but the shapes and dtypes must be
correct.
"""
for eval_name, batch in batches.items():
tick = time.time()
cache_key: BatchSpec = FrozenDict(jax.eval_shape(lambda: batch)) # pylint:disable=cell-var-from-loop
if cache_key not in self._compiled_eval_step_cache:
self._compiled_eval_step_cache[cache_key] = self._partitioner.compile(
self._partitioned_eval_step, self.train_state, batch)
self._compiled_eval_steps[eval_name] = self._compiled_eval_step_cache[
cache_key]
tock = time.time()
self.eval_metrics_managers[eval_name].write_scalar(
"timing/compilation_seconds", tock - tick, self.train_state.step)
@property
@abc.abstractmethod
def _partitioned_train_step(self) -> PartitionedTrainCallable:
"""Partitioned train step."""
raise NotImplementedError
@property
@abc.abstractmethod
def _partitioned_eval_step(self) -> PartitionedEvalCallable:
"""Partitioned eval step."""
raise NotImplementedError
def accumulate_grads_microbatched(
model: models.BaseModel,
train_state: train_state_lib.TrainState,
batch: BatchType,
dropout_rng: Rng,
num_microbatches: Optional[int],
data_partition_spec: PartitionSpec = PartitionSpec("data"),
) -> Tuple[train_state_lib.TrainState, MutableMetricMapType,
Optional[FlaxMutables]]:
"""Implements optional microbatched gradient accumulation.
Args:
model: the instantiation of `BaseModel` to train.
train_state: A train state with model parameters and optimizer state.
batch: input batch consisting of either - simply-padded batched features
'encoder_input_tokens', 'decoder_input_tokens' 'decoder_target_tokens'
'decoder_loss_weights'- packed, batched features with additional
"(encoder|decoder)_segment_id", "(encoder|decoder)_position"
dropout_rng: jax PRNGKey for dropout.
num_microbatches: the number of microbatches to use, or None for direct
training.
data_partition_spec: the PartitionSpec to use for partitioning annotations
on the batch.
Returns:
Accumulated gradients and incremental metrics.
"""
batch_size = next(iter(batch.values())).shape[0]
grad_fn = jax.value_and_grad(model.loss_fn, has_aux=True)
# We assume that the model loss_fn supports flax mutables if and only if
# the train state includes non-empty flax mutables.
# Note: Default t5x models don't support flax_mutables. One needs to subclass
# them and return flax_mutables from `get_initial_variables` and `loss_fn`.
initial_flax_mutables = train_state.flax_mutables if train_state.flax_mutables else None
if num_microbatches is None or num_microbatches <= 1:
if initial_flax_mutables is None:
(_, metrics), grad_accum = grad_fn(train_state.params, batch, dropout_rng)
flax_mutables = None
else:
(_, metrics, flax_mutables), grad_accum = grad_fn(train_state.params,
batch, dropout_rng,
initial_flax_mutables)
else:
assert batch_size % num_microbatches == 0, (
"Batch size isn't divided evenly by num_microbatches.")
microbatch_size = batch_size // num_microbatches
logging.info("using microbatches: %d microbatches, %d size",
num_microbatches, microbatch_size)
def get_microbatch(batch: BatchType, idx: int) -> Mapping[str, jnp.ndarray]:
"""Fetch microbatch slice from possibly-packed input data."""
offset = idx * microbatch_size
length = microbatch_size
starts = {k: [offset] + [0] * (b.ndim - 1) for k, b in batch.items()}
limits = {k: [length] + list(b.shape[1:]) for k, b in batch.items()}
return {
k: jax.lax.dynamic_slice(b, starts[k], limits[k])
for k, b in batch.items()
}
def metrics_and_grad(loop_cnt, dropout_rng, flax_mutables=None):
dropout_rng, sub_dropout_rng = jax.random.split(dropout_rng)
mbatch = get_microbatch(batch, loop_cnt)
# We need to annotate the microbatch sharding as we would a batch.
mbatch = jax.tree_map(
lambda x: partitioning.with_sharding_constraint( # pylint: disable=g-long-lambda
x, data_partition_spec),
mbatch)
if flax_mutables is None:
(_, metrics), grad = grad_fn(train_state.params, mbatch,
sub_dropout_rng)
else:
(_, metrics, flax_mutables), grad = grad_fn(train_state.params, mbatch,
sub_dropout_rng,
flax_mutables)
return metrics, grad, flax_mutables
def per_microbatch_train_step(
loop_cnt: int, state: Tuple[jnp.ndarray, jnp.ndarray,
Mapping[str, jnp.ndarray],
Optional[FlaxMutables]]
) -> Tuple[jnp.ndarray, jnp.ndarray, Mapping[str, jnp.ndarray],
Optional[FlaxMutables]]:
(dropout_rng, grad_accum, prev_metrics, flax_mutables) = state
metrics, grad, flax_mutables = metrics_and_grad(loop_cnt, dropout_rng,
flax_mutables)
grad_accum = jax.tree_multimap(jnp.add, grad_accum, grad)
metrics = jax.lax.cond(loop_cnt == 0, lambda _: metrics,
lambda _: merge_metrics(prev_metrics, metrics),
None)
return dropout_rng, grad_accum, metrics, flax_mutables
# Initialize gradient accumulation loop state.
accum_dtype = jnp.float32
grad_accum_init = jax.tree_map(lambda x: jnp.zeros(x.shape, accum_dtype),
train_state.params)
initial_metrics_shape, _, _ = jax.eval_shape(
metrics_and_grad, loop_cnt=0, dropout_rng=dropout_rng)
initial_metrics = {
k: metrics_lib.shape_obj_to_defined_obj(v)
for k, v in initial_metrics_shape.items()
}
loop_init = (dropout_rng, grad_accum_init, initial_metrics,
initial_flax_mutables)
new_dropout_rng, grad_accum, metrics, flax_mutables = jax.lax.fori_loop(
0, num_microbatches, per_microbatch_train_step, loop_init)
del new_dropout_rng
return grad_accum, metrics, flax_mutables
def apply_grads(
train_state: train_state_lib.TrainState,
grad_accum: ModelWeights,
metrics: MutableMetricMapType,
learning_rate: jnp.ndarray,
weight_metrics_computer: Optional[WeightMetricsComputer],
other_state_variables: Optional[Mapping[str, Any]] = None
) -> Tuple[train_state_lib.TrainState, MetricMapType]:
"""Applies gradients to the optimizer.
Args:
train_state: A train state that contains model and optimizer params.
grad_accum: results of `accumulate_grads` call.
metrics: incremental metrics from `accumulate_grads` call.
learning_rate: the learning rate to use for this step.
weight_metrics_computer: A WeightMetricsComputer instance, or None, to
decide what metrics, if any, to log about weights and weight updates
during training.
other_state_variables: other variables to update the state with.
Returns:
The updated train state, metrics.
"""
if other_state_variables is None:
other_state_variables = {}
# Update optimizer using accumulated gradient.
new_train_state = train_state.apply_gradient(
grad_accum, learning_rate=learning_rate, **other_state_variables)
metrics["learning_rate"] = clu.metrics.Average.from_model_output(
jnp.asarray([learning_rate]))
metrics["learning_rate/current"] = clu.metrics.LastValue.from_model_output(
jnp.asarray([learning_rate]))
if weight_metrics_computer is not None:
metrics.update(
weight_metrics_computer.compute_metrics(grad_accum, train_state,
new_train_state))
return new_train_state, metrics
def eval_step(model: models.BaseModel, train_state: train_state_lib.TrainState,
batch: jnp.ndarray) -> MetricMapType:
"""Default evaluation step."""
_, metrics = model.eval_fn(train_state.params, batch)
return metrics
def train_with_lr(
train_state: train_state_lib.TrainState,
batch: BatchType,
learning_rate: jnp.ndarray,
dropout_rng: Rng,
model: models.BaseModel,
num_microbatches: Optional[int],
weight_metrics_computer: Optional[WeightMetricsComputer] = None,
data_partition_spec: PartitionSpec = PartitionSpec("data")):
"""Main training function with LR schedule."""
grad_accum, metrics, flax_mutables = (
accumulate_grads_microbatched(model, train_state, batch, dropout_rng,
num_microbatches, data_partition_spec))
new_train_state, metrics = apply_grads(
train_state,
grad_accum,
metrics,
learning_rate,
weight_metrics_computer,
other_state_variables={"flax_mutables": flax_mutables}
if flax_mutables else None)
return new_train_state, metrics
class Trainer(BaseTrainer):
"""Training loop with optional microbatches."""
def __init__(self,
model: models.BaseModel,
train_state: train_state_lib.TrainState,
partitioner: partitioning.BasePartitioner,
eval_names: Sequence[str],
summary_dir: Optional[str],
train_state_axes: Any,
rng: Rng,
learning_rate_fn: LearningRateCallable,
num_microbatches: Optional[int],
weight_metrics_computer: Optional[WeightMetricsComputer] = None):
"""Trainer constructor.
Args:
model: the instantiation of `BaseModel` to train.
train_state: a train state with parameters and optimizer state.
partitioner: the partitioner to use.
eval_names: names of evaluation datasets, which must match the keys of the
mapping passed to `eval`.
summary_dir: optional directory to write TensorBoard metrics to.
train_state_axes: partitioning info for the optimizer to be used.
rng: jax PRNGKey seed for random operations, to be combined with step
number for a deterministic RNG.
learning_rate_fn: returns the learning rate given the current step.
num_microbatches: the number of microbatches to use, or None for direct
training.
weight_metrics_computer: A WeightMetricsComputer instance, or None, to
decide what metrics, if any, to log about weights and weight updates
during training.
"""
self._learning_rate_fn = learning_rate_fn
self._num_microbatches = num_microbatches
self._weight_metrics_computer = weight_metrics_computer
super().__init__(
model=model,
train_state=train_state,
partitioner=partitioner,
eval_names=eval_names,
summary_dir=summary_dir,
train_state_axes=train_state_axes,
rng=rng)
@cached_property
def _partitioned_train_step(self) -> PartitionedTrainCallable:
def train_step(train_state: train_state_lib.TrainState, batch: BatchType):
return train_with_lr(
train_state,
batch,
learning_rate=self._learning_rate_fn(train_state.step),
dropout_rng=self._get_step_rng(train_state.step),
model=self._model,
num_microbatches=self._num_microbatches,
weight_metrics_computer=self._weight_metrics_computer,
data_partition_spec=self._partitioner.data_partition_spec)
return self._partitioner.partition(
train_step,
in_axis_resources=(self._train_state_axes,
self._partitioner.data_partition_spec),
out_axis_resources=(self._train_state_axes, None),
donate_argnums=(0,))
@cached_property
def _partitioned_eval_step(self) -> PartitionedEvalCallable:
return self._partitioner.partition(
lambda *args, **kwargs: eval_step(self._model, *args, **kwargs),
in_axis_resources=(self._train_state_axes,
self._partitioner.data_partition_spec),
out_axis_resources=None)
def _warn_action_not_run(action, task, metric):
logging.warning(
"The action: %s that tracks metric: %s for task: %s is not run", action,
metric, task)
# TODO(b/200701930): Support dynamic registration for enum.
@enum.unique
class ActionMode(enum.Enum):
"""Defines when to run a action.
For example, TRAIN means to run an action after a TRAIN loop is done.
"""
TRAIN = 1
TRAIN_EVAL = 2
INFER_EVAL = 3
class BaseAction(abc.ABC):
"""Base Action class for override. The action itself does nothing."""
@abc.abstractmethod
def run(self, train_state: train_state_lib.TrainState,
metrics_by_task: Mapping[str, MetricValueMapType]) -> bool:
"""Runs an action for the given train_state and metrics.
Args:
train_state: The current train_state in the training loop.
metrics_by_task: A map of metrics that is grouped by each task.
Returns:
A bool indicating whether training should be halted.
"""
raise NotImplementedError("Action must define its run method.")
ActionMapType = Mapping[ActionMode, Sequence[BaseAction]]
class EarlyStoppingAction(BaseAction):
"""Terminates training when the specified metric is not improving.
Checks whether the monitored metrics are decreasing after every `train` or
`eval`, or `both`. If the loss is no longer decreasing for `patience` times,
terminate the training process.
"""
def __init__(self,
metric: Tuple[str, str],
mode: str,
patience: int = 3,
atol: float = 0.,
rtol: float = 0.):
"""Constructs the EarlyStoppingAction.
Args:
metric: A metric to monitor when invoking the action. When the metric does
not improve for a number of times (specified in patience), stop the
training. The tuple takes 2 strings, whereas the first string defines
the task to track, and the second defines the metric of the task to
track. e.g.,: ('mt5_xnli_dev_test.all_langs', 'accuracy') would monitor
the 'accuracy' for `mt5_xnli_dev_test.all_langs`.
mode: One of `{"min", "max"}`. In `min` mode, training will stop when the
quantity monitored has stopped decreasing; in `"max"` mode it will stop
when the quantity monitored has stopped increasing;
patience: The threshold of stopping criteria. Usually this is measured by
number of steps.
atol: Absolute tolerance in the monitored quantity to qualify as an
improvement, i.e. a change of less than `atol`, will count as no
improvement.
rtol: Relative tolerance in the monitoried quantity to qualify as an
improvement. This combined with `atol` defines whether a change is
considered improvement. The total change is calculated as following:
`delta = (atol + rtol * previous)` See `numpy.allclose` for detailed
information.
"""
self._task, self._metric = metric
if mode not in ["min", "max"]:
raise ValueError('mode must be in ["min", "max"]')
self._mode = mode
if atol < 0:
raise ValueError("atol must be greater equal than 0")
self._atol = atol
if rtol < 0:
raise ValueError("rtol must be greater equal than 0")
self._rtol = rtol
self._patience = patience
self._metric_history = []
def _compare_fn(self, current, previous):
compare_fn = jnp.greater_equal if self._mode == "min" else jnp.less_equal
delta = self._atol + self._rtol * abs(previous)
if self._mode == "max":
delta *= -1
return compare_fn(current, previous - delta)
def run(self, train_state: train_state_lib.TrainState,
metrics_by_task: Mapping[str, MetricValueMapType]) -> bool:
if self._task not in metrics_by_task.keys():
logging.warning(
"Monitoring task: %s does not exist in all task metrics. "
"Available tasks are : %s", self._task, metrics_by_task.keys())
_warn_action_not_run(type(self), self._task, self._metric)
return False
if self._metric not in metrics_by_task[self._task].keys():
logging.warning("Metric : %s does not exist in metrics for task : %s",
self._metric, self._task)
_warn_action_not_run(type(self), self._task, self._metric)
return False
m = metrics_by_task[self._task][self._metric]
if not isinstance(m, clu.values.Scalar):
logging.warning("Metric %s does not have Scalar type. Found %s.",
self._metric, type(m))
_warn_action_not_run(type(self), self._task, self._metric)
return False
self._metric_history.append(m.value)
# Not enough history.
if len(self._metric_history) < self._patience:
return False
if all(
self._compare_fn(self._metric_history[i + 1], self._metric_history[i])
for i in range(self._patience - 1)):
logging.warning(
"Requested `stop_training` in training loop (Details below).\n "
"Metric: %s for Task: %s has not improved for %s iterations, detail "
"history of the metric: %s", self._metric, self._task, self._patience,
self._metric_history)
return True
# Remove extra histories that we don't need to keep.
self._metric_history.pop(0)
return False
class TerminateOnNanAction(BaseAction):
"""Terminates training when NaN loss is detected.
Checks whether the loss metric for the given task is NaN or Inf and terminates
training if so.
"""
def __init__(self, task: str, metric: str = "loss"):
"""Constructs the TerminateOnNanAction.
Args:
task: Defines the task from which to track the given metric.
metric: Defines a metric to track for NaN values (defaults to "loss").
"""
self._task = task
self._metric = metric
def run(self, train_state: train_state_lib.TrainState,
metrics_by_task: Mapping[str, MetricValueMapType]) -> bool:
if self._task not in metrics_by_task.keys():
logging.warning(
"Monitoring task: %s does not exist in all task metrics. "
"Available tasks are : %s", self._task, metrics_by_task.keys())
_warn_action_not_run(type(self), self._task, self._metric)
return False
if self._metric not in metrics_by_task[self._task].keys():
logging.warning("Metric : %s does not exist in metrics for task : %s",
self._metric, self._task)
_warn_action_not_run(type(self), self._task, self._metric)
return False
metric = metrics_by_task[self._task][self._metric]
if not isinstance(metric, clu.values.Scalar):
logging.warning("Metric %s does not have Scalar type. Found %s.",
self._metric, type(metric))
_warn_action_not_run(type(self), self._task, self._metric)
return False
value = metric.value
if np.isnan(value) or np.isinf(value):
logging.warning(
"Requested `stop_training` in training loop (Details below).\n "
"NaN encountered in metric for task : %s", self._task)
return True
return False
|