Spaces:
Build error
Build error
File size: 7,116 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""XManager launcher for t5x.
Read about XManager:
https://github.com/deepmind/xmanager
Usage:
xmanager xm_launch.py -- \
--gin_file="t5x/examples/t5/t5_1_1/examples/base_wmt_from_scratch.gin" \
--model_dir=gs://$GOOGLE_CLOUD_BUCKET_NAME/t5x/$(date +%Y%m%d) \
--tfds_data_dir=gs://$GOOGLE_CLOUD_BUCKET_NAME/t5x/data
"""
import collections
import os
import shutil
import sys
import tempfile
from typing import Any, Dict
from absl import app
from absl import flags
from xmanager import xm
from xmanager import xm_local
from xmanager.contrib import copybara
_NAME = flags.DEFINE_string(
'name',
't5x',
'Name of the experiment.',
)
_RUN_MODE = flags.DEFINE_enum(
'run_mode',
'train',
['train', 'eval', 'infer'],
'The mode to run T5X under',
)
_CLONE_GITHUB = flags.DEFINE_bool(
'clone_github',
False,
'If True, clone t5x/ from GitHub. Otherwise, use the local version.',
)
_COPYBARA_CONFIG = flags.DEFINE_string(
'copybara_config',
None,
'Copybara config to use. See https://github.com/google/copybara '
'If None, the local t5x directory will be copied with no modifications.',
)
_COPYBARA_WORKFLOW = flags.DEFINE_string(
'copybara_workflow',
'local',
'Copybara workflow to apply with --copybara_config',
)
_COPYBARA_ORIGIN = flags.DEFINE_string(
'copybara_origin',
'..',
'Copybara origin folder to apply with --copybara_config',
)
_TPU_CORES = flags.DEFINE_integer(
'tpu_cores',
8,
'Number of TPU cores to run. There will be a new worker every 8 cores. '
'TPU types: https://cloud.google.com/tpu/docs/types-zones#types',
)
_MODEL_DIR = flags.DEFINE_string(
'model_dir',
None,
'Model dir to save logs, ckpts, etc. in "gs://model_dir" format.',
)
_TFDS_DATA_DIR = flags.DEFINE_string(
'tfds_data_dir',
None,
'Data dir to save the processed dataset in "gs://data_dir" format.',
)
_SEQIO_CACHE_DIRS = flags.DEFINE_list(
'seqio_additional_cache_dirs',
[],
'Comma separated directories in "gs://cache_dir" format to search for cached Tasks in addition to defaults.',
)
_PROJECT_DIRS = flags.DEFINE_list(
'project_dirs',
None,
'Project dir with custom components.',
)
_PIP_INSTALL = flags.DEFINE_list(
'pip_install',
None,
'Extra pip packages to install.',
)
@xm.run_in_asyncio_loop
async def main(_, gin_args: Dict[str, Any]):
name = 't5x'
async with xm_local.create_experiment(experiment_title=name) as experiment:
# TODO(chenandrew) Vertex Tensorboard is not supported for TPUs.
# https://github.com/deepmind/xmanager/issues/11
# vertex = xm_local.vertex_client()
# tensorboard_name = await vertex.get_or_create_tensorboard(name)
# tensorboard = xm_local.TensorboardCapability(
# name=tensorboard_name,
# base_output_directory=_MODEL_DIR.value)
tensorboard = None
executor = xm_local.Vertex(
requirements=xm.JobRequirements(tpu_v2=_TPU_CORES.value),
tensorboard=tensorboard,
)
staging = os.path.join(tempfile.mkdtemp(), _NAME.value)
# The t5x/ root directory.
t5x_path = os.path.abspath(os.path.join(__file__, '..', '..', '..'))
t5x_destination = os.path.join(staging, 't5x')
if _COPYBARA_CONFIG.value:
t5x_path = copybara.run_workflow(_COPYBARA_CONFIG.value,
_COPYBARA_WORKFLOW.value,
_COPYBARA_ORIGIN.value, t5x_destination)
if _CLONE_GITHUB.value:
copy_t5x = [
'RUN git clone --branch=main https://github.com/google-research/t5x',
]
else:
if t5x_path != t5x_destination:
shutil.copytree(t5x_path, t5x_destination)
staging_t5x_path = os.path.join(os.path.basename(staging), 't5x')
copy_t5x = [f'COPY {staging_t5x_path}/ t5x']
copy_projects = []
if _PROJECT_DIRS.value:
for project_dir in _PROJECT_DIRS.value:
project_name = os.path.basename(project_dir)
shutil.copytree(project_dir, os.path.join(staging, project_name))
staging_project_dir = os.path.join(
os.path.basename(staging), project_name)
copy_projects.append(f'COPY {staging_project_dir}/ {project_name}')
pip_install = []
if _PIP_INSTALL.value:
pip_install = [
'RUN python3 -m pip install ' + ' '.join(_PIP_INSTALL.value)
]
[executable] = experiment.package([
xm.python_container(
executor.Spec(),
path=staging,
base_image='gcr.io/deeplearning-platform-release/base-cpu',
docker_instructions=[
*copy_t5x,
'WORKDIR t5x',
'RUN python3 -m pip install -e ".[tpu]" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html',
# TODO(chenandrew): Remove the below command.
# TFDS 4.5.2 is missing SplitInfo fields.
'RUN python3 -m pip install --force-reinstall tfds-nightly',
*pip_install,
*copy_projects,
],
entrypoint=xm.CommandList([
f'export MODEL_DIR=\'"{_MODEL_DIR.value}/logs"\'',
f'export TFDS_DATA_DIR={_TFDS_DATA_DIR.value}',
'export SEQIO_CACHE_DIRS={}'.format(','.join(
_SEQIO_CACHE_DIRS.value)),
'export T5X_DIR=.',
('python3 ${T5X_DIR}/t5x/main.py '
f'--run_mode={_RUN_MODE.value} '
'--gin.MODEL_DIR=${MODEL_DIR} '
'--tfds_data_dir=${TFDS_DATA_DIR} '
'--undefok=seqio_additional_cache_dirs '
'--seqio_additional_cache_dirs=${SEQIO_CACHE_DIRS} '),
]),
),
])
args = []
for k, l in gin_args.items():
for v in l:
if '\'' or '"' in v:
args.append(xm.ShellSafeArg(f'--{k}={v}'))
else:
args.append(f'--{k}={v}')
experiment.add(xm.Job(executable=executable, executor=executor, args=args))
def _split_gin_args(argv, prefix='--gin'):
"""Separates absl and gin args into separate lists."""
other_args = [argv[0]]
gin_args = collections.defaultdict(list)
for arg in argv[1:]:
if arg.startswith(prefix):
k, v = arg[len('--'):].split('=', maxsplit=1)
gin_args[k].append(v)
else:
other_args.append(arg)
return other_args, gin_args
if __name__ == '__main__':
_other_args, _gin_args = _split_gin_args(sys.argv)
app.run(lambda argv: main(argv, _gin_args), _other_args)
|