File size: 7,116 Bytes
b100e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

r"""XManager launcher for t5x.

Read about XManager:
https://github.com/deepmind/xmanager

Usage:
xmanager xm_launch.py -- \
  --gin_file="t5x/examples/t5/t5_1_1/examples/base_wmt_from_scratch.gin" \
  --model_dir=gs://$GOOGLE_CLOUD_BUCKET_NAME/t5x/$(date +%Y%m%d) \
  --tfds_data_dir=gs://$GOOGLE_CLOUD_BUCKET_NAME/t5x/data
"""

import collections
import os
import shutil
import sys
import tempfile
from typing import Any, Dict

from absl import app
from absl import flags
from xmanager import xm
from xmanager import xm_local
from xmanager.contrib import copybara

_NAME = flags.DEFINE_string(
    'name',
    't5x',
    'Name of the experiment.',
)
_RUN_MODE = flags.DEFINE_enum(
    'run_mode',
    'train',
    ['train', 'eval', 'infer'],
    'The mode to run T5X under',
)
_CLONE_GITHUB = flags.DEFINE_bool(
    'clone_github',
    False,
    'If True, clone t5x/ from GitHub. Otherwise, use the local version.',
)
_COPYBARA_CONFIG = flags.DEFINE_string(
    'copybara_config',
    None,
    'Copybara config to use. See https://github.com/google/copybara '
    'If None, the local t5x directory will be copied with no modifications.',
)
_COPYBARA_WORKFLOW = flags.DEFINE_string(
    'copybara_workflow',
    'local',
    'Copybara workflow to apply with --copybara_config',
)
_COPYBARA_ORIGIN = flags.DEFINE_string(
    'copybara_origin',
    '..',
    'Copybara origin folder to apply with --copybara_config',
)

_TPU_CORES = flags.DEFINE_integer(
    'tpu_cores',
    8,
    'Number of TPU cores to run. There will be a new worker every 8 cores. '
    'TPU types: https://cloud.google.com/tpu/docs/types-zones#types',
)
_MODEL_DIR = flags.DEFINE_string(
    'model_dir',
    None,
    'Model dir to save logs, ckpts, etc. in "gs://model_dir" format.',
)
_TFDS_DATA_DIR = flags.DEFINE_string(
    'tfds_data_dir',
    None,
    'Data dir to save the processed dataset in "gs://data_dir" format.',
)
_SEQIO_CACHE_DIRS = flags.DEFINE_list(
    'seqio_additional_cache_dirs',
    [],
    'Comma separated directories in "gs://cache_dir" format to search for cached Tasks in addition to defaults.',
)
_PROJECT_DIRS = flags.DEFINE_list(
    'project_dirs',
    None,
    'Project dir with custom components.',
)
_PIP_INSTALL = flags.DEFINE_list(
    'pip_install',
    None,
    'Extra pip packages to install.',
)


@xm.run_in_asyncio_loop
async def main(_, gin_args: Dict[str, Any]):
  name = 't5x'
  async with xm_local.create_experiment(experiment_title=name) as experiment:
    # TODO(chenandrew) Vertex Tensorboard is not supported for TPUs.
    # https://github.com/deepmind/xmanager/issues/11
    # vertex = xm_local.vertex_client()
    # tensorboard_name = await vertex.get_or_create_tensorboard(name)
    # tensorboard = xm_local.TensorboardCapability(
    #     name=tensorboard_name,
    #     base_output_directory=_MODEL_DIR.value)
    tensorboard = None
    executor = xm_local.Vertex(
        requirements=xm.JobRequirements(tpu_v2=_TPU_CORES.value),
        tensorboard=tensorboard,
    )

    staging = os.path.join(tempfile.mkdtemp(), _NAME.value)
    # The t5x/ root directory.
    t5x_path = os.path.abspath(os.path.join(__file__, '..', '..', '..'))
    t5x_destination = os.path.join(staging, 't5x')
    if _COPYBARA_CONFIG.value:
      t5x_path = copybara.run_workflow(_COPYBARA_CONFIG.value,
                                       _COPYBARA_WORKFLOW.value,
                                       _COPYBARA_ORIGIN.value, t5x_destination)

    if _CLONE_GITHUB.value:
      copy_t5x = [
          'RUN git clone --branch=main https://github.com/google-research/t5x',
      ]
    else:
      if t5x_path != t5x_destination:
        shutil.copytree(t5x_path, t5x_destination)
      staging_t5x_path = os.path.join(os.path.basename(staging), 't5x')
      copy_t5x = [f'COPY {staging_t5x_path}/ t5x']

    copy_projects = []
    if _PROJECT_DIRS.value:
      for project_dir in _PROJECT_DIRS.value:
        project_name = os.path.basename(project_dir)
        shutil.copytree(project_dir, os.path.join(staging, project_name))
        staging_project_dir = os.path.join(
            os.path.basename(staging), project_name)
        copy_projects.append(f'COPY {staging_project_dir}/ {project_name}')

    pip_install = []
    if _PIP_INSTALL.value:
      pip_install = [
          'RUN python3 -m pip install ' + ' '.join(_PIP_INSTALL.value)
      ]

    [executable] = experiment.package([
        xm.python_container(
            executor.Spec(),
            path=staging,
            base_image='gcr.io/deeplearning-platform-release/base-cpu',
            docker_instructions=[
                *copy_t5x,
                'WORKDIR t5x',
                'RUN python3 -m pip install -e ".[tpu]" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html',
                # TODO(chenandrew): Remove the below command.
                # TFDS 4.5.2 is missing SplitInfo fields.
                'RUN python3 -m pip install --force-reinstall tfds-nightly',
                *pip_install,
                *copy_projects,
            ],
            entrypoint=xm.CommandList([
                f'export MODEL_DIR=\'"{_MODEL_DIR.value}/logs"\'',
                f'export TFDS_DATA_DIR={_TFDS_DATA_DIR.value}',
                'export SEQIO_CACHE_DIRS={}'.format(','.join(
                    _SEQIO_CACHE_DIRS.value)),
                'export T5X_DIR=.',
                ('python3 ${T5X_DIR}/t5x/main.py '
                 f'--run_mode={_RUN_MODE.value} '
                 '--gin.MODEL_DIR=${MODEL_DIR} '
                 '--tfds_data_dir=${TFDS_DATA_DIR} '
                 '--undefok=seqio_additional_cache_dirs '
                 '--seqio_additional_cache_dirs=${SEQIO_CACHE_DIRS} '),
            ]),
        ),
    ])
    args = []
    for k, l in gin_args.items():
      for v in l:
        if '\'' or '"' in v:
          args.append(xm.ShellSafeArg(f'--{k}={v}'))
        else:
          args.append(f'--{k}={v}')

    experiment.add(xm.Job(executable=executable, executor=executor, args=args))


def _split_gin_args(argv, prefix='--gin'):
  """Separates absl and gin args into separate lists."""
  other_args = [argv[0]]
  gin_args = collections.defaultdict(list)
  for arg in argv[1:]:
    if arg.startswith(prefix):
      k, v = arg[len('--'):].split('=', maxsplit=1)
      gin_args[k].append(v)
    else:
      other_args.append(arg)
  return other_args, gin_args


if __name__ == '__main__':
  _other_args, _gin_args = _split_gin_args(sys.argv)
  app.run(lambda argv: main(argv, _gin_args), _other_args)