Spaces:
Build error
Build error
File size: 10,937 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loss functions."""
import enum
from typing import Tuple, Mapping, Optional, Union
from flax.training import common_utils
import jax
import jax.numpy as jnp
import numpy as np
@jax.custom_vjp
def cross_entropy_with_logits(logits: jnp.ndarray, targets: jnp.ndarray,
z_loss: float) -> jnp.ndarray:
"""Computes cross entropy loss with stable custom gradient.
Computes a stabilized-gradient version of:
-jnp.sum(targets * nn.log_softmax(logits), axis=-1)
If z_loss > 0, then an auxiliary loss equal to z_loss*log(z)^2
will be added to the cross entropy loss (z = softmax normalization constant).
The two uses of z_loss are:
1. To keep the logits from drifting too far from zero, which can cause
unacceptable roundoff errors in bfloat16.
2. To encourage the logits to be normalized log-probabilities.
Args:
logits: [batch, length, num_classes] float array.
targets: categorical one-hot targets [batch, length, num_classes] float
array.
z_loss: coefficient for auxilliary z-loss loss term.
Returns:
tuple with the total loss and the z_loss, both
float arrays with shape [batch, length].
"""
logits_sum = jax.scipy.special.logsumexp(logits, axis=-1, keepdims=True)
log_softmax = logits - logits_sum
loss = -jnp.sum(targets * log_softmax, axis=-1)
# Add auxilliary z-loss term.
log_z = jnp.squeeze(logits_sum, axis=-1)
total_z_loss = z_loss * jax.lax.square(log_z)
loss += total_z_loss
return loss, total_z_loss
def _cross_entropy_with_logits_fwd(
logits: jnp.ndarray,
targets: jnp.ndarray,
z_loss: float = 0.0
) -> Tuple[jnp.ndarray, Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray, jnp
.ndarray, jnp.ndarray, jnp.ndarray, jnp.ndarray]]:
"""Forward-mode of `cross_entropy_with_logits`."""
max_logit = logits.max(axis=-1, keepdims=True)
shifted = logits - max_logit
exp_shifted = jnp.exp(shifted)
sum_exp = jnp.sum(exp_shifted, axis=-1, keepdims=True)
log_softmax = shifted - jnp.log(sum_exp)
loss = -jnp.sum(targets * log_softmax, axis=-1)
# Add auxilliary z-loss term.
log_z = jnp.squeeze(jnp.log(sum_exp) + max_logit, axis=-1)
total_z_loss = z_loss * jax.lax.square(log_z)
loss += total_z_loss
return (loss, total_z_loss), (logits, targets, z_loss, exp_shifted, sum_exp,
log_softmax, log_z)
def _cross_entropy_with_logits_bwd(
res: Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray, jnp.ndarray, jnp.ndarray,
jnp.ndarray, jnp.ndarray], g: Tuple[jnp.ndarray, jnp.ndarray]
) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]:
"""Backward-mode of `cross_entropy_with_logits`."""
g = g[0] # Ignore z_loss component as that is only used for logging.
logits, targets, z_loss, exp_shifted, sum_exp, log_softmax, log_z = res
# z-loss term adds the (2 * z_loss * log_z) factor.
deriv = (
jnp.expand_dims(1 + 2 * z_loss * log_z, -1) * exp_shifted / sum_exp -
targets)
g_logits = jnp.expand_dims(g, axis=-1) * deriv
g_targets = -jnp.expand_dims(g, axis=-1) * log_softmax
return (jnp.asarray(g_logits,
logits.dtype), jnp.asarray(g_targets, targets.dtype),
jnp.array(0.0)) # sets z-loss coeff gradient to 0
cross_entropy_with_logits.defvjp(_cross_entropy_with_logits_fwd,
_cross_entropy_with_logits_bwd)
def compute_weighted_cross_entropy(
logits: jnp.ndarray,
targets: jnp.ndarray,
weights: Optional[jnp.ndarray] = None,
label_smoothing: float = 0.0,
z_loss: float = 0.0,
loss_normalizing_factor: Optional[float] = None
) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]:
"""Compute weighted cross entropy and entropy for log probs and targets.
Args:
logits: [batch, length, num_classes] float array.
targets: categorical targets [batch, length] int array.
weights: None or array of shape [batch, length].
label_smoothing: label smoothing constant, used to determine the on and off
values.
z_loss: coefficient for auxiliary z-loss loss term.
loss_normalizing_factor: Constant to divide loss by. If not specified, loss
will not be normalized. Intended for backward compatibility with T5-MTF
training. Should not normally be used.
Returns:
Tuple of scalar loss, z_loss, and weight sum.
"""
if logits.ndim != targets.ndim + 1:
raise ValueError('Incorrect shapes. Got shape %s logits and %s targets' %
(str(logits.shape), str(targets.shape)))
vocab_size = logits.shape[-1]
confidence = 1.0 - label_smoothing
low_confidence = (1.0 - confidence) / (vocab_size - 1)
normalizing_constant = -(
confidence * jnp.log(confidence) +
(vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20))
soft_targets = common_utils.onehot(
targets, vocab_size, on_value=confidence, off_value=low_confidence)
total_loss, total_z_loss = cross_entropy_with_logits(
logits, soft_targets, z_loss=z_loss)
total_loss = total_loss - normalizing_constant
weight_sum = np.prod(targets.shape)
if weights is not None:
total_loss = total_loss * weights
total_z_loss = total_z_loss * weights
weight_sum = jnp.sum(weights)
# By default, we do not normalize loss based on anything.
# We don't normalize based on batch size because the optimizers we use are
# pretty much scale invariant, so this simplifies things.
# We don't normalize based on number of non-padding tokens in order to treat
# each token as equally important regardless of sequence length.
if loss_normalizing_factor is not None:
total_loss /= loss_normalizing_factor
total_z_loss /= loss_normalizing_factor
return jnp.sum(total_loss), jnp.sum(total_z_loss), weight_sum
@enum.unique
class SpecialLossNormalizingFactor(enum.Enum):
"""Specially calcualted loss_normalizing_factors, that are not a constant.
Attributes:
NUM_REAL_TARGET_TOKENS: Whether to divide the loss by the number of real
(non-padding) tokens in the current target batch. If
'decoder_loss_weights' are specified, it will be the sum of the weights.
Otherwise it will be the number of non-zero 'decoder_target_tokens'.
NUM_TOTAL_TARGET_TOKENS: Whether to divide the loss by the total number of
target tokens, i.e., batch_size * target_seq_length (including padding).
AVERAGE_PER_SEQUENCE: This will first compute the per-sequence loss
(averaged over the number of real target tokens in the sequence), and then
compute the average of that over the sequences. This can be preferable to
NUM_REAL_TARGET_TOKENS for finetuning, because it will weigh all examples
equally, regardless of sequence length (which can be especially important
for multi-task finetuning).
"""
NUM_REAL_TARGET_TOKENS = 1
NUM_TOTAL_TARGET_TOKENS = 2
AVERAGE_PER_SEQUENCE = 3
def convert_special_loss_normalizing_factor_to_enum(
x: str) -> SpecialLossNormalizingFactor:
"""Converts stringified version of LNF to an enum.
This is useful because gin dynamic registration does not (currently)
have support for enum.
Args:
x: stringified version of SpecialLossNormalizingFactor enum.
Returns:
SpecialLossNormalizingFactor enum instance.
"""
x = x.upper()
if x == 'NUM_REAL_TARGET_TOKENS':
return SpecialLossNormalizingFactor.NUM_REAL_TARGET_TOKENS
if x == 'NUM_TOTAL_TARGET_TOKENS':
return SpecialLossNormalizingFactor.NUM_TOTAL_TARGET_TOKENS
if x == 'AVERAGE_PER_SEQUENCE':
return SpecialLossNormalizingFactor.AVERAGE_PER_SEQUENCE
raise ValueError(
'Could not convert string \"%s\" to SpecialLossNormalizingFactor' % x)
def get_loss_normalizing_factor_and_weights(
loss_normalizing_factor: Optional[Union[float, int, str,
SpecialLossNormalizingFactor]],
batch: Mapping[str, jnp.ndarray]):
"""Get the float loss_normalizing_factor and loss weights.
If loss_normalizing_factor is float or None, this will simply return the
input loss_normalizing_factor and batch.
If loss_normalizing_factor is a SpecialLossNormalizingFactor, it will
return a float loss_normalizing_factor and loss weights corresponding to
the special LNF. See SpecialLossNormalizingFactor for more details.
Args:
loss_normalizing_factor: The input LNF, which may be a float, None, or
SpecialLossNormalizingFactor (or a stringified SLNF).
batch: Input data batch.
Returns:
Tuple of (output_loss_normalizing_factor, loss_weights).
'output_loss_normalizing_factor' is a scalar float (Python float
or jnp float).
'loss_weights' is the per token loss weight JNP array.
"""
loss_weights = batch.get('decoder_loss_weights', None)
if (loss_normalizing_factor is None or
not isinstance(loss_normalizing_factor,
(str, SpecialLossNormalizingFactor))):
return (loss_normalizing_factor, loss_weights)
if isinstance(loss_normalizing_factor, str):
loss_normalizing_factor = convert_special_loss_normalizing_factor_to_enum(
loss_normalizing_factor)
# If `loss_weights` are not provided, we assume that the padding id is 0 and
# that non-padding tokens in the decoder all correspond to the positions
# where loss should be taken. If more fine-grained behavior (e.g., taking
# loss on subset of 'decoder_target_tokens') is desired, provide
# `loss_weights` that account for this.
if loss_weights is None:
loss_weights = jnp.asarray(batch['decoder_target_tokens'] > 0, jnp.float32)
output_normalizing_factor = None
if (loss_normalizing_factor ==
SpecialLossNormalizingFactor.NUM_REAL_TARGET_TOKENS):
output_normalizing_factor = jnp.sum(loss_weights)
elif (loss_normalizing_factor ==
SpecialLossNormalizingFactor.NUM_TOTAL_TARGET_TOKENS):
output_normalizing_factor = np.prod(batch['decoder_target_tokens'].shape)
elif (loss_normalizing_factor ==
SpecialLossNormalizingFactor.AVERAGE_PER_SEQUENCE):
loss_weights /= jnp.sum(loss_weights, axis=-1, keepdims=True) + 1e-3
output_normalizing_factor = jnp.sum(loss_weights)
else:
raise ValueError('Unsupported value of loss_normalizing_factor: %s' %
str(loss_normalizing_factor))
return (output_normalizing_factor, loss_weights)
|