Spaces:
Build error
Build error
File size: 10,276 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train state for passing around objects during training."""
from typing import Any, Mapping, MutableMapping, Optional, Tuple
from flax import traverse_util
import flax.core
from flax.core import scope as flax_scope
from flax.linen import partitioning as flax_partitioning
import flax.serialization
import flax.struct
import jax.numpy as jnp
from t5x import optimizers
import typing_extensions
EMPTY_DICT = flax.core.freeze({})
FrozenDict = flax_scope.FrozenDict
FrozenVariableDict = flax_scope.FrozenVariableDict
MutableVariableDict = flax_scope.MutableVariableDict
VariableDict = flax_scope.VariableDict
class TrainState(typing_extensions.Protocol):
"""TrainState interface."""
@property
def step(self) -> jnp.ndarray:
"""The current training step as an integer scalar."""
...
@property
def params(self) -> FrozenVariableDict:
"""The parameters of the model as a PyTree matching the Flax module."""
...
@property
def param_states(self) -> FrozenVariableDict:
"""The optimizer states of the parameters as a PyTree."""
...
@property
def flax_mutables(self) -> FrozenVariableDict:
"""Flax mutable collection."""
...
def state_dict(self) -> MutableVariableDict:
"""Returns a mutable representation of the state for checkpointing."""
...
def restore_state(self, state_dict: Mapping[str, Any]) -> 'TrainState':
"""Restores the object state from a state dict."""
...
def replace_params(self, params: VariableDict) -> 'TrainState':
...
def replace_step(self, step: jnp.ndarray) -> 'TrainState':
...
def apply_gradient(self,
grads,
learning_rate,
flax_mutables=EMPTY_DICT) -> 'TrainState':
"""Applies gradient, increments step, and returns an updated TrainState."""
...
def as_logical_axes(self) -> 'TrainState':
"""Replaces `param` and `param-states` with their logical axis names."""
...
def _validate_params_axes(params_axes, params):
axis_names = flax_partitioning.get_axis_names(params_axes)
missing_params_axes = (
set(traverse_util.flatten_dict(params, sep='/')) -
set(traverse_util.flatten_dict(axis_names, sep='/')))
if missing_params_axes:
raise ValueError(
f'Missing axis names for parameters: {missing_params_axes}')
def _split_variables_and_axes(
variables_and_axes: FrozenVariableDict
) -> Tuple[FrozenVariableDict, FrozenVariableDict]:
"""Splits `variables_and_axes` into two separate dicts with the same keys."""
# For each `key`, `key_axes` (if any) are its axes in `variables_and_axes`.
variables = {}
axes = {}
for k, v in variables_and_axes.items():
if k.endswith('_axes'):
axes[k[:-5]] = v # k without "_axes".
_validate_params_axes(v, variables_and_axes[k[:-5]]) # k without "_axes".
else:
variables[k] = v
return flax.core.freeze(variables), flax.core.freeze(axes)
class FlaxOptimTrainState(flax.struct.PyTreeNode):
"""Simple train state for holding parameters, step, optimizer state."""
_optimizer: optimizers.OptimizerType
# Contains axis metadata (e.g., names) matching parameter tree.
params_axes: Optional[FrozenVariableDict] = None
# Flax mutable fields.
flax_mutables: FrozenDict = EMPTY_DICT
# Contains axis metadata (e.g., names) matching flax_mutables tree.
flax_mutables_axes: Optional[FrozenVariableDict] = EMPTY_DICT
@classmethod
def create(cls, optimizer_def: optimizers.OptimizerDefType,
model_variables: FrozenVariableDict) -> 'FlaxOptimTrainState':
other_variables, params = model_variables.pop('params')
if 'params_axes' in other_variables:
other_variables, params_axes = other_variables.pop('params_axes')
_validate_params_axes(params_axes, params)
else:
params_axes = None
# Split other_variables into mutables and their corresponding axes.
flax_mutables, flax_mutables_axes = _split_variables_and_axes(
other_variables)
# If the optimizer supports `set_param_axes`, then assume that the model
# code is emitting these axes and use it.
if hasattr(optimizer_def, 'set_param_axes'):
if params_axes is None:
raise ValueError('The optimizer supports params_axes for model-based '
'partitioning, but the model is not emitting them.')
# `get_axis_names` removes "_axes" suffix in the leaf name and replaces
# `AxisMetadata` with `PartitionSpec`.
axis_names = flax_partitioning.get_axis_names(params_axes)
optimizer_def.set_param_axes(axis_names)
optimizer = optimizer_def.create(params)
return FlaxOptimTrainState(
optimizer,
params_axes=params_axes,
flax_mutables=flax_mutables,
flax_mutables_axes=flax_mutables_axes)
@property
def step(self) -> jnp.ndarray:
return self._optimizer.state.step
@property
def params(self) -> FrozenVariableDict:
return self._optimizer.target
@property
def param_states(self) -> FrozenVariableDict:
return self._optimizer.state.param_states
def state_dict(self) -> MutableVariableDict:
state_dict = self._optimizer.state_dict()
if self.flax_mutables:
state_dict['flax_mutables'] = flax.core.unfreeze(self.flax_mutables)
return state_dict
def apply_gradient(self,
grads,
learning_rate,
flax_mutables=EMPTY_DICT) -> 'FlaxOptimTrainState':
new_optimizer = self._optimizer.apply_gradient(
grads, learning_rate=learning_rate)
return self.replace(_optimizer=new_optimizer, flax_mutables=flax_mutables)
def replace_params(self, params: VariableDict) -> 'FlaxOptimTrainState':
return self.replace(_optimizer=self._optimizer.replace(target=params))
def replace_step(self, step: jnp.ndarray) -> 'FlaxOptimTrainState':
state_dict = self.state_dict()
state_dict['state']['step'] = step
return self.restore_state(state_dict)
def restore_state(self, state_dict: VariableDict) -> 'FlaxOptimTrainState':
new_optimizer = self._optimizer.restore_state(state_dict)
return self.replace(
_optimizer=new_optimizer,
flax_mutables=flax.core.freeze(state_dict['flax_mutables'])
if 'flax_mutables' in state_dict else EMPTY_DICT)
def as_logical_axes(self) -> 'FlaxOptimTrainState':
if not hasattr(self._optimizer.optimizer_def, 'derive_logical_axes'):
raise ValueError(
f"Optimizer '{self._optimizer.optimizer_def.__class__.__name__}' "
'requires a `derive_logical_axes` method to be used with named axis '
'partitioning.')
return FlaxOptimTrainState(
_optimizer=self._optimizer.optimizer_def.derive_logical_axes(
self._optimizer,
flax_partitioning.get_axis_names(self.params_axes)),
flax_mutables=flax_partitioning.get_axis_names(self.flax_mutables_axes))
class InferenceState(flax.struct.PyTreeNode):
"""State compatible with FlaxOptimTrainState without optimizer state."""
step: jnp.ndarray
params: flax_scope.FrozenVariableDict
params_axes: Optional[flax_scope.FrozenVariableDict] = None
flax_mutables: flax_scope.FrozenDict = EMPTY_DICT
flax_mutables_axes: Optional[flax_scope.FrozenVariableDict] = None
@classmethod
def create(cls, model_variables: FrozenVariableDict) -> 'InferenceState':
other_variables, params = model_variables.pop('params')
if 'params_axes' in other_variables:
other_variables, params_axes = other_variables.pop('params_axes')
_validate_params_axes(params_axes, params)
else:
params_axes = None
# Split other_variables into mutables and their corresponding axes.
flax_mutables, flax_mutables_axes = _split_variables_and_axes(
other_variables)
return InferenceState(
step=jnp.array(0),
params=params,
params_axes=params_axes,
flax_mutables=flax_mutables,
flax_mutables_axes=flax_mutables_axes)
@property
def param_states(self) -> FrozenVariableDict:
"""The optimizer states of the parameters as a PyTree."""
raise NotImplementedError('InferenceState has no optimizer states.')
def apply_gradient(self, *args, **kwargs) -> 'InferenceState':
raise NotImplementedError(
'InferenceState does not support `apply_gradient`.')
def state_dict(self) -> MutableMapping[str, Any]:
state_dict = {
'target': flax.core.unfreeze(self.params),
'state': {
'step': self.step
}
}
if self.flax_mutables:
state_dict['flax_mutables'] = flax.core.unfreeze(self.flax_mutables)
return state_dict
def replace_step(self, step: jnp.ndarray) -> 'InferenceState':
return self.replace(step=step)
def replace_params(self, params: FrozenVariableDict) -> 'InferenceState':
return self.replace(params=params)
def restore_state(self, state_dict: Mapping[str, Any]) -> 'InferenceState':
return self.replace(
params=flax.core.freeze(state_dict['target']),
step=state_dict['state']['step'],
flax_mutables=flax.core.freeze(state_dict['flax_mutables'])
if 'flax_mutables' in state_dict else EMPTY_DICT)
def as_logical_axes(self) -> 'InferenceState':
# Set step to None so that when the logical axes are processed by the
# flax.partitioning.logical_to_mesh_axes function, it will be skipped
# because jax.tree_map will short circut and never call the function on the
# step.
return InferenceState(
step=None,
params=flax_partitioning.get_axis_names(self.params_axes),
flax_mutables=flax_partitioning.get_axis_names(self.flax_mutables_axes))
|