Spaces:
Build error
Build error
File size: 9,175 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright 2022 The MT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model vocabulary."""
import dataclasses
import math
from typing import Callable, Optional, Sequence
from mt3 import event_codec
import note_seq
import seqio
import t5.data
import tensorflow as tf
DECODED_EOS_ID = -1
DECODED_INVALID_ID = -2
# defaults for vocabulary config
DEFAULT_STEPS_PER_SECOND = 100
DEFAULT_MAX_SHIFT_SECONDS = 10
DEFAULT_NUM_VELOCITY_BINS = 127
@dataclasses.dataclass
class VocabularyConfig:
"""Vocabulary configuration parameters."""
steps_per_second: int = DEFAULT_STEPS_PER_SECOND
max_shift_seconds: int = DEFAULT_MAX_SHIFT_SECONDS
num_velocity_bins: int = DEFAULT_NUM_VELOCITY_BINS
@property
def abbrev_str(self):
s = ''
if self.steps_per_second != DEFAULT_STEPS_PER_SECOND:
s += 'ss%d' % self.steps_per_second
if self.max_shift_seconds != DEFAULT_MAX_SHIFT_SECONDS:
s += 'ms%d' % self.max_shift_seconds
if self.num_velocity_bins != DEFAULT_NUM_VELOCITY_BINS:
s += 'vb%d' % self.num_velocity_bins
return s
def num_velocity_bins_from_codec(codec: event_codec.Codec):
"""Get number of velocity bins from event codec."""
lo, hi = codec.event_type_range('velocity')
return hi - lo
def velocity_to_bin(velocity, num_velocity_bins):
if velocity == 0:
return 0
else:
return math.ceil(num_velocity_bins * velocity / note_seq.MAX_MIDI_VELOCITY)
def bin_to_velocity(velocity_bin, num_velocity_bins):
if velocity_bin == 0:
return 0
else:
return int(note_seq.MAX_MIDI_VELOCITY * velocity_bin / num_velocity_bins)
def drop_programs(tokens, codec: event_codec.Codec):
"""Drops program change events from a token sequence."""
min_program_id, max_program_id = codec.event_type_range('program')
return tokens[(tokens < min_program_id) | (tokens > max_program_id)]
def programs_to_midi_classes(tokens, codec):
"""Modifies program events to be the first program in the MIDI class."""
min_program_id, max_program_id = codec.event_type_range('program')
is_program = (tokens >= min_program_id) & (tokens <= max_program_id)
return tf.where(
is_program,
min_program_id + 8 * ((tokens - min_program_id) // 8),
tokens)
@dataclasses.dataclass
class ProgramGranularity:
# both tokens_map_fn and program_map_fn should be idempotent
tokens_map_fn: Callable[[Sequence[int], event_codec.Codec], Sequence[int]]
program_map_fn: Callable[[int], int]
PROGRAM_GRANULARITIES = {
# "flat" granularity; drop program change tokens and set NoteSequence
# programs to zero
'flat': ProgramGranularity(
tokens_map_fn=drop_programs,
program_map_fn=lambda program: 0),
# map each program to the first program in its MIDI class
'midi_class': ProgramGranularity(
tokens_map_fn=programs_to_midi_classes,
program_map_fn=lambda program: 8 * (program // 8)),
# leave programs as is
'full': ProgramGranularity(
tokens_map_fn=lambda tokens, codec: tokens,
program_map_fn=lambda program: program)
}
def build_codec(vocab_config: VocabularyConfig):
"""Build event codec."""
event_ranges = [
event_codec.EventRange('pitch', note_seq.MIN_MIDI_PITCH,
note_seq.MAX_MIDI_PITCH),
# velocity bin 0 is used for note-off
event_codec.EventRange('velocity', 0, vocab_config.num_velocity_bins),
# used to indicate that a pitch is present at the beginning of a segment
# (only has an "off" event as when using ties all pitch events until the
# "tie" event belong to the tie section)
event_codec.EventRange('tie', 0, 0),
event_codec.EventRange('program', note_seq.MIN_MIDI_PROGRAM,
note_seq.MAX_MIDI_PROGRAM),
event_codec.EventRange('drum', note_seq.MIN_MIDI_PITCH,
note_seq.MAX_MIDI_PITCH),
]
return event_codec.Codec(
max_shift_steps=(vocab_config.steps_per_second *
vocab_config.max_shift_seconds),
steps_per_second=vocab_config.steps_per_second,
event_ranges=event_ranges)
def vocabulary_from_codec(codec: event_codec.Codec) -> seqio.Vocabulary:
return GenericTokenVocabulary(
codec.num_classes, extra_ids=t5.data.DEFAULT_EXTRA_IDS)
class GenericTokenVocabulary(seqio.Vocabulary):
"""Vocabulary with pass-through encoding of tokens."""
def __init__(self, regular_ids: int, extra_ids: int = 0):
# The special tokens: 0=PAD, 1=EOS, and 2=UNK
self._num_special_tokens = 3
self._num_regular_tokens = regular_ids
super().__init__(extra_ids=extra_ids)
@property
def eos_id(self) -> Optional[int]:
return 1
@property
def unk_id(self) -> Optional[int]:
return 2
@property
def _base_vocab_size(self) -> int:
"""Number of ids.
Returns:
an integer, the vocabulary size
"""
return self._num_special_tokens + self._num_regular_tokens
def _encode(self, token_ids: Sequence[int]) -> Sequence[int]:
"""Encode a list of tokens ids as a list of integers.
To keep the first few ids for special tokens, increase ids by the number
of special tokens.
Args:
token_ids: array of token ids.
Returns:
a list of integers (not terminated by EOS)
"""
encoded = []
for token_id in token_ids:
if not 0 <= token_id < self._num_regular_tokens:
raise ValueError(
f'token_id {token_id} does not fall within valid range of '
f'[0, {self._num_regular_tokens})')
encoded.append(token_id + self._num_special_tokens)
return encoded
def _decode(self, ids: Sequence[int]) -> Sequence[int]:
"""Decode a list of integers to a list of token ids.
The special tokens of PAD and UNK as well as extra_ids will be
replaced with DECODED_INVALID_ID in the output. If EOS is present, it will
be the final token in the decoded output and will be represented by
DECODED_EOS_ID.
Args:
ids: a list of integers
Returns:
a list of token ids.
"""
# convert all the extra ids to INVALID_ID
def _decode_id(encoded_id):
if encoded_id == self.eos_id:
return DECODED_EOS_ID
elif encoded_id < self._num_special_tokens:
return DECODED_INVALID_ID
elif encoded_id >= self._base_vocab_size:
return DECODED_INVALID_ID
else:
return encoded_id - self._num_special_tokens
ids = [_decode_id(int(i)) for i in ids]
return ids
def _encode_tf(self, token_ids: tf.Tensor) -> tf.Tensor:
"""Encode a list of tokens to a tf.Tensor.
Args:
token_ids: array of audio token ids.
Returns:
a 1d tf.Tensor with dtype tf.int32
"""
with tf.control_dependencies(
[tf.debugging.assert_less(
token_ids, tf.cast(self._num_regular_tokens, token_ids.dtype)),
tf.debugging.assert_greater_equal(
token_ids, tf.cast(0, token_ids.dtype))
]):
tf_ids = token_ids + self._num_special_tokens
return tf_ids
def _decode_tf(self, ids: tf.Tensor) -> tf.Tensor:
"""Decode in TensorFlow.
The special tokens of PAD and UNK as well as extra_ids will be
replaced with DECODED_INVALID_ID in the output. If EOS is present, it and
all following tokens in the decoded output and will be represented by
DECODED_EOS_ID.
Args:
ids: a 1d tf.Tensor with dtype tf.int32
Returns:
a 1d tf.Tensor with dtype tf.int32
"""
# Create a mask that is true from the first EOS position onward.
# First, create an array that is True whenever there is an EOS, then cumsum
# that array so that every position after and including the first True is
# >1, then cast back to bool for the final mask.
eos_and_after = tf.cumsum(
tf.cast(tf.equal(ids, self.eos_id), tf.int32), exclusive=False, axis=-1)
eos_and_after = tf.cast(eos_and_after, tf.bool)
return tf.where(
eos_and_after,
DECODED_EOS_ID,
tf.where(
tf.logical_and(
tf.greater_equal(ids, self._num_special_tokens),
tf.less(ids, self._base_vocab_size)),
ids - self._num_special_tokens,
DECODED_INVALID_ID))
def __eq__(self, other):
their_extra_ids = other.extra_ids
their_num_regular_tokens = other._num_regular_tokens
return (self.extra_ids == their_extra_ids and
self._num_regular_tokens == their_num_regular_tokens)
def num_embeddings(vocabulary: GenericTokenVocabulary) -> int:
"""Vocabulary size as a multiple of 128 for TPU efficiency."""
return 128 * math.ceil(vocabulary.vocab_size / 128)
|