Spaces:
Runtime error
Runtime error
File size: 12,012 Bytes
fb23992 b5d5c28 043f26d b5d5c28 043f26d d410924 043f26d b5d5c28 043f26d d410924 043f26d d410924 fb23992 d410924 043f26d 270829d b5d5c28 0aa8fba b5d5c28 043f26d 0aa8fba 043f26d 0aa8fba 043f26d 0aa8fba 043f26d 44ccef2 52fa6fd 043f26d b5d5c28 270829d a6f876f 043f26d b5d5c28 270829d a6f876f 043f26d b5d5c28 a6f876f c9cd475 5d86663 c9cd475 043f26d 85457ac 043f26d 587bddc d410924 043f26d 684a737 270829d 043f26d b5d5c28 043f26d b5d5c28 043f26d d410924 4fe0536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
from contextlib import nullcontext
import gradio as gr
import torch
from torch import autocast
from diffusers import DiffusionPipeline
from transformers import (
pipeline,
MBart50TokenizerFast,
MBartForConditionalGeneration,
)
import utils
device = "cuda" if torch.cuda.is_available() else "cpu"
device_dict = {"cuda": 0, "cpu": -1}
context = autocast if device == "cuda" else nullcontext
dtype = torch.float16 if device == "cuda" else torch.float32
# Detect if code is running in Colab
is_colab = utils.is_google_colab()
colab_instruction = "" if is_colab else """
<p>You can skip the queue using Colab:
<a href="https://colab.research.google.com/drive/1nhXyddThldnxPfIYO2my_bYinlMUW30R?usp=sharing">
<img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>"""
device_print = "GPU π₯" if torch.cuda.is_available() else "CPU π₯Ά"
# Add language detection pipeline
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
language_detection_pipeline = pipeline("text-classification",
model=language_detection_model_ckpt,
device=device_dict[device])
# Add model for language translation
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device)
model_id = "CompVis/stable-diffusion-v1-4"
if is_colab:
pipe = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline="multilingual_stable_diffusion",
detection_pipeline=language_detection_pipeline,
translation_model=trans_model,
translation_tokenizer=trans_tokenizer,
revision="fp16",
torch_dtype=dtype,
)
else:
import streamlit as st
pipe = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline="multilingual_stable_diffusion",
use_auth_token=os.environ["USER_TOKEN"],
detection_pipeline=language_detection_pipeline,
translation_model=trans_model,
translation_tokenizer=trans_tokenizer,
revision="fp16",
torch_dtype=dtype,
)
pipe = pipe.to(device)
#torch.backends.cudnn.benchmark = True
num_samples = 2
def infer(prompt, steps, scale):
with context("cuda"):
images = pipe(num_samples*[prompt],
guidance_scale=scale,
num_inference_steps=int(steps)).images
return images
css = """
a {
color: inherit;
text-decoration: underline;
}
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #0000FF;
background: #0000FF;
}
input[type='range'] {
accent-color: #0000FF;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
#container-advanced-btns{
display: flex;
flex-wrap: wrap;
justify-content: space-between;
align-items: center;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
#generated_id{
min-height: 700px
}
"""
block = gr.Blocks(css=css)
examples = [
[
'Χ ΧΧ¨ ΧΧΧ ΧΧΧΧ Χ’Χ ΧΧΧ£ ΧΧΧ, Χ©Χ§ΧΧ’Χ, Χ¦ΧΧ’ΧΧ ΧΧΧ§ΧΧ, Χ¦ΧΧΧΧΧͺ, Χ¨ΧΧΧΧ¦ΧΧ ΧΧΧΧΧ, ΧΧΧΧ ΧΧ€ΧΧ¨Χ ΧΧΧΧΧΧΧ§, Χ¨ΧΧΧΧΧ‘ΧΧ',
50,
7.5,
],
[
'δΈι»ηε¨ε€©ε ',
45,
7.5,
],
[
'Una casa en la playa en un atardecer lluvioso',
45,
7.5,
],
[
'Ein Hund, der Orange isst',
45,
7.5,
],
[
"Photo d'un restaurant parisien",
45,
7.5,
],
[
"FranΔu restorΔna fotogrΔfija",
45,
7.5,
],
[
"ΰ°ͺΰ°Ύΰ°°ΰ°Ώΰ°Έΰ°Ώΰ°―ΰ°¨ΰ± ΰ°°ΰ±ΰ°Έΰ±ΰ°ΰ°Ύΰ°°ΰ±ΰ°ΰ°ΰ± ΰ°―ΰ±ΰ°ΰ±ΰ° ΰ°«ΰ±ΰ°ΰ±",
45,
7.5,
],
[
"Ψ΅ΩΨ±Ψ© ΩΩ
Ψ·ΨΉΩ
Ψ¨Ψ§Ψ±ΩΨ³Ω",
45,
7.5,
],
]
with block as demo:
gr.HTML(
f"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Multilingual Stable Diffusion
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Stable Diffusion Pipeline that supports prompts in 50 different languages.
</p>
<p style="margin-bottom: 10px; font-size: 94%">
{colab_instruction}
Running on <b>{device_print}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt", show_label=False, max_lines=1
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Run").style(
margin=False,
rounded=(False, True, True, False),
)
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(
grid=[2], height="auto"
)
with gr.Row(elem_id="advanced-options"):
steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=45, step=5)
scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
)
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, steps, scale], outputs=gallery, cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text, steps, scale], outputs=gallery)
btn.click(infer, inputs=[text, steps, scale], outputs=gallery)
gr.HTML(
"""
<div class="footer">
<p>Stable Diffusion model that supports multiple languages by <a href="https://huggingface.co/juancopi81" style="text-decoration: underline;" target="_blank">juancopi81</a>
</p>
</div>
<div class="acknowledgments">
<p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
<p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
</div>
"""
)
gr.Markdown('''
[![Twitter Follow](https://img.shields.io/twitter/follow/juancopi81?style=social)](https://twitter.com/juancopi81)
![visitors](https://visitor-badge.glitch.me/badge?page_id=Juancopi81.MultilingualStableDiffusion)
''')
if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab) |