Spaces:
Running
Running
File size: 16,787 Bytes
ab15ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import streamlit as st
import os
import re
import pandas as pd
from dotenv import load_dotenv
from supabase import create_client, Client
from transformers import pipeline
import plotly.express as px
import plotly.graph_objects as go
import time
# ---------------------------------------------------------------------------------
# Supabase Setup
# ---------------------------------------------------------------------------------
load_dotenv()
SUPABASE_URL = os.getenv("SUPABASE_URL")
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)
# ---------------------------------------------------------------------------------
# Data Loading Function
# ---------------------------------------------------------------------------------
def load_data(table):
try:
if supabase:
response = supabase.from_(table).select("*").execute()
if hasattr(response, 'data'):
return pd.DataFrame(response.data)
else:
st.error(f"Error fetching data or no data returned for table '{table}'. Check Supabase logs.")
return pd.DataFrame()
else:
st.error("Supabase client not initialized.")
return pd.DataFrame()
except Exception as e:
st.error(f"An error occurred during data loading from table '{table}': {e}")
return pd.DataFrame()
# ---------------------------------------------------------------------------------
# Helper Function Definitions
# ---------------------------------------------------------------------------------
def extract_country_from_prompt_regex(question, country_list):
"""Extracts the first matching country from the list found in the question."""
for country in country_list:
# Use word boundaries (\b) for more accurate matching
if re.search(r"\b" + re.escape(country) + r"\b", question, re.IGNORECASE):
return country
return None # Return None if no country in the list is found
def extract_years_from_prompt(question):
"""Extracts a single year or a start/end year range from a question string."""
start_year, end_year = None, None
# Pattern 1: Single year (e.g., "in 2010", "year 2010")
single_year_match = re.search(r'\b(in|year|del)\s+(\d{4})\b', question, re.IGNORECASE)
if single_year_match:
year = int(single_year_match.group(2))
return year, year # Return single year as start and end
# Pattern 2: Year range (e.g., "between 2000 and 2010", "from 2005 to 2015")
range_match = re.search(r'\b(between|from)\s+(\d{4})\s+(and|to)\s+(\d{4})\b', question, re.IGNORECASE)
if range_match:
s_year = int(range_match.group(2))
e_year = int(range_match.group(4))
return min(s_year, e_year), max(s_year, e_year) # Ensure start <= end
# Pattern 3: Simple range like "2000-2010"
simple_range_match = re.search(r'\b(\d{4})-(\d{4})\b', question)
if simple_range_match:
s_year = int(simple_range_match.group(1))
e_year = int(simple_range_match.group(2))
return min(s_year, e_year), max(s_year, e_year)
# Pattern 4: After Year (e.g., "after 2015")
after_match = re.search(r'\b(after|since)\s+(\d{4})\b', question, re.IGNORECASE)
if after_match:
start_year = int(after_match.group(2))
# end_year remains None, signifying >= start_year
# Pattern 5: Before Year (e.g., "before 2005")
before_match = re.search(r'\b(before)\s+(\d{4})\b', question, re.IGNORECASE)
if before_match:
end_year = int(before_match.group(2))
# start_year remains None, signifying <= end_year
# Special case: if 'after' wasn't also found, return (None, end_year)
if start_year is None:
return None, end_year
# Return extracted years (could be None, None; start, None; None, end; or start, end)
# If single year patterns were matched first, they returned already.
return start_year, end_year
def filter_df_by_years(df, year_col, start_year, end_year):
"""Filters a DataFrame based on a year column and a start/end year range."""
if year_col not in df.columns:
st.warning(f"Year column '{year_col}' not found.")
return df
try:
# Ensure year column is numeric, coerce errors to NaT/NaN
df[year_col] = pd.to_numeric(df[year_col], errors='coerce')
# Drop rows where conversion failed, essential for comparison
df_filtered = df.dropna(subset=[year_col]).copy()
# Convert to integer only AFTER dropping NaN, avoids potential float issues
df_filtered[year_col] = df_filtered[year_col].astype(int)
except Exception as e:
st.error(f"Could not convert year column '{year_col}' to numeric: {e}")
return df # Return original on error
original_count = len(df_filtered) # Count after potential NaNs are dropped
if start_year is None and end_year is None:
# No year filtering needed
return df_filtered
st.info(f"Filtering by years: Start={start_year}, End={end_year} on column '{year_col}'")
# Apply filters based on provided start/end years
if start_year is not None and end_year is not None:
# Specific range or single year (where start_year == end_year)
df_filtered = df_filtered[(df_filtered[year_col] >= start_year) & (df_filtered[year_col] <= end_year)]
elif start_year is not None:
# Only start year ("after X")
df_filtered = df_filtered[df_filtered[year_col] >= start_year]
elif end_year is not None:
# Only end year ("before Y")
df_filtered = df_filtered[df_filtered[year_col] <= end_year]
filtered_count = len(df_filtered)
if filtered_count == 0 and original_count > 0: # Check if filtering removed all data
st.warning(f"No data found for the specified year(s): {start_year if start_year else ''}-{end_year if end_year else ''}")
elif filtered_count < original_count:
st.write(f"Filtered data by year. Rows reduced from {original_count} to {filtered_count}.")
return df_filtered
# ---------------------------------------------------------------------------------
# Load Model
# ---------------------------------------------------------------------------------
@st.cache_resource
def load_gpt2():
try:
generator = pipeline('text-generation', model='openai-community/gpt2')
return generator
except Exception as e:
st.error(f"Failed to load GPT-2 model: {e}")
return None
generator = load_gpt2()
# ---------------------------------------------------------------------------------
# Load Initial Data
# ---------------------------------------------------------------------------------
if 'data_labor' not in st.session_state:
st.session_state['data_labor'] = load_data("labor") # Or your default table
# ---------------------------------------------------------------------------------
# Streamlit App UI Starts Here
# ---------------------------------------------------------------------------------
st.title("Análisis de Datos con GPT-2 y Visualización Automática")
# Get the dataframe from session state
df = st.session_state.get('data_labor')
# --- Check if DataFrame is loaded ---
if df is None or df.empty:
st.error("Failed to load data or data is empty. Please check Supabase connection and table 'labor'.")
# Optionally add a button to retry loading
if st.button("Retry Loading Data"):
st.session_state['data_labor'] = load_data("labor")
st.rerun() # Rerun the script after attempting reload
else:
# --- Section for the user question ---
st.subheader("Pregúntame algo sobre los datos de 'labor'")
question = st.text_input("Ejemplo: 'Cuál fue la fuerza laboral (labor force) en Germany entre 2010 y 2015?'")
if question:
# --- Main processing logic ---
st.write("--- Análisis de la pregunta ---") # Debug separator
# Filter by Country
unique_countries = df['geo'].unique().tolist() if 'geo' in df.columns else []
extracted_country = extract_country_from_prompt_regex(question, unique_countries)
filtered_df = df.copy()
if extracted_country:
if 'geo' in filtered_df.columns:
filtered_df = filtered_df[filtered_df['geo'] == extracted_country]
st.success(f"Filtrando datos para el país: {extracted_country}")
else:
st.warning("Columna 'geo' no encontrada para filtrar por país.")
else:
st.info("No se especificó un país o no se encontró. Mostrando datos para todos los países disponibles.")
# Identify Columns
numerical_cols = [col for col in filtered_df.columns if pd.api.types.is_numeric_dtype(filtered_df[col])]
year_col_names = ['year', 'time', 'period', 'año']
year_cols = [col for col in filtered_df.columns if col.lower() in year_col_names and col in numerical_cols]
categorical_cols = [col for col in filtered_df.columns if pd.api.types.is_object_dtype(filtered_df[col]) and col != 'geo']
# Extract Years and Filter DataFrame
start_year, end_year = extract_years_from_prompt(question)
year_col_to_use = None
if year_cols:
year_col_to_use = year_cols[0]
filtered_df = filter_df_by_years(filtered_df, year_col_to_use, start_year, end_year)
else:
st.warning("No se pudo identificar una columna de año numérica para filtrar.")
# --- GPT-2 Description Generation ---
if generator: # Check if model loaded successfully
st.subheader("Descripción Automática (GPT-2)")
# Create a concise context
context_description = "The dataset contains labor data"
context_info = f"Data for {extracted_country or 'all countries'}"
if extracted_country:
# If a specific country is filtered, mention it clearly
context_description += f" specifically for {extracted_country}"
else:
# Otherwise, mention the broader scope if known (e.g., Europe)
# If you load data for multiple countries by default, state that
context_description += " covering multiple countries" # Adjust if needed
if year_col_to_use and (start_year is not None or end_year is not None):
context_info += f" between years {start_year if start_year else 'start'} and {end_year if end_year else 'end'}"
context_info += f". Columns include: {', '.join(filtered_df.columns.tolist())}."
prompt = f"{context_info}\n\nQuestion: {question}\nAnswer based ONLY on the provided context:"
try:
st.info("Generando descripción...") # Let user know it's working
description = generator(prompt, max_new_tokens=200, num_return_sequences=1)[0]['generated_text']
# Clean up the output to show only the answer part
answer_part = description.split(prompt)[-1] # Split by the prompt itself
st.success("Descripción generada:")
st.write(answer_part.strip())
except Exception as e:
st.error(f"Error generando descripción con GPT-2: {e}")
else:
st.warning("El modelo GPT-2 no está cargado. No se puede generar descripción.")
# --- Visualization Section ---
st.subheader("Visualización Automática")
if filtered_df.empty:
st.warning("No hay datos para mostrar después de aplicar los filtros.")
# --- Logic for LINE PLOT ---
elif year_col_to_use and numerical_cols:
start_time_graph = time.time()
potential_y_cols = [col for col in numerical_cols if col != year_col_to_use]
y_col = None
if not potential_y_cols:
st.warning(f"No se encontraron columnas numéricas de datos (aparte de '{year_col_to_use}') para graficar contra el año.")
else:
labor_keywords = ['labor', 'labour', 'workforce', 'employment', 'lfpr', 'fuerza'] # Added 'fuerza'
found_labor_col = False
for col in potential_y_cols:
if any(keyword in col.lower() for keyword in labor_keywords):
y_col = col
st.info(f"Se encontró columna relevante: '{y_col}'. Usándola para el eje Y.")
found_labor_col = True
break
if not found_labor_col:
y_col = potential_y_cols[0]
st.info(f"No se encontró columna específica. Usando la primera columna numérica disponible ('{y_col}') para el eje Y.")
if y_col:
x_col = year_col_to_use
fig = go.Figure()
title = f"{y_col} vs {x_col}"
if extracted_country:
title += f" en {extracted_country}"
if start_year is not None or end_year is not None:
year_range_str = ""
if start_year is not None:
year_range_str += str(start_year)
if end_year is not None:
year_range_str += f"-{end_year}" if start_year is not None else str(end_year)
if year_range_str:
title += f" ({year_range_str})"
df_plot = filtered_df.sort_values(by=x_col)
if y_col in df_plot.columns and x_col in df_plot.columns:
# Add color based on 'sex' if available
if 'sex' in df_plot.columns:
for sex_val in df_plot['sex'].unique():
df_subset = df_plot[df_plot['sex'] == sex_val]
fig.add_trace(go.Scatter(x=df_subset[x_col], y=df_subset[y_col], mode='lines+markers', name=str(sex_val)))
fig.update_layout(title=title, xaxis_title=x_col, yaxis_title=y_col)
else:
fig.add_trace(go.Scatter(x=df_plot[x_col], y=df_plot[y_col], mode='lines+markers', name=y_col))
fig.update_layout(title=title, xaxis_title=x_col, yaxis_title=y_col)
st.plotly_chart(fig)
end_time_graph = time.time()
st.write(f"Gráfico generado en: {end_time_graph - start_time_graph:.4f} segundos")
else:
st.warning("Las columnas X o Y seleccionadas no existen en los datos filtrados.")
# --- Logic for SCATTER PLOT ---
elif numerical_cols and len(numerical_cols) >= 2:
start_time_graph = time.time()
st.subheader("Gráfico de Dispersión Sugerido")
col1 = st.selectbox("Selecciona la primera columna numérica para el gráfico de dispersión:", numerical_cols)
col2 = st.selectbox("Selecciona la segunda columna numérica para el gráfico de dispersión:", [c for c in numerical_cols if c != col1])
if col1 and col2:
fig = px.scatter(filtered_df, x=col1, y=col2, title=f"Gráfico de Dispersión: {col1} vs {col2}")
st.plotly_chart(fig)
end_time_graph = time.time()
st.write(f"Gráfico generado en: {end_time_graph - start_time_graph:.4f} segundos")
else:
st.warning("Las columnas X o Y seleccionadas no existen en los datos filtrados.")
# --- Logic for SCATTER PLOT ---
# (Your scatter plot logic here...)
elif numerical_cols and len(numerical_cols) >= (2 + (1 if year_col_to_use else 0)) :
# ... (scatter plot code, ensuring cols exist) ...
pass # Placeholder
# --- Logic for BAR CHART ---
# (Your bar chart logic here...)
elif numerical_cols and categorical_cols:
# ... (bar chart code, ensuring cols exist and aggregating if needed) ...
pass # Placeholder
else:
# Only show this if no plots were generated above
if not (year_col_to_use and y_col): # Check if line plot was attempted
st.info("No se encontraron columnas adecuadas o suficientes datos después del filtrado para generar un gráfico automáticamente.") |