File size: 16,787 Bytes
ab15ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import streamlit as st
import os
import re
import pandas as pd
from dotenv import load_dotenv
from supabase import create_client, Client
from transformers import pipeline
import plotly.express as px
import plotly.graph_objects as go
import time

# ---------------------------------------------------------------------------------
# Supabase Setup
# ---------------------------------------------------------------------------------
load_dotenv()
SUPABASE_URL = os.getenv("SUPABASE_URL")
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)

# ---------------------------------------------------------------------------------
# Data Loading Function
# ---------------------------------------------------------------------------------
def load_data(table):
    try:
        if supabase:
            response = supabase.from_(table).select("*").execute()
            if hasattr(response, 'data'):
                return pd.DataFrame(response.data)
            else:
                st.error(f"Error fetching data or no data returned for table '{table}'. Check Supabase logs.")
                return pd.DataFrame()
        else:
            st.error("Supabase client not initialized.")
            return pd.DataFrame()
    except Exception as e:
        st.error(f"An error occurred during data loading from table '{table}': {e}")
        return pd.DataFrame()

# ---------------------------------------------------------------------------------
# Helper Function Definitions
# ---------------------------------------------------------------------------------

def extract_country_from_prompt_regex(question, country_list):
    """Extracts the first matching country from the list found in the question."""
    for country in country_list:
        # Use word boundaries (\b) for more accurate matching
        if re.search(r"\b" + re.escape(country) + r"\b", question, re.IGNORECASE):
            return country
    return None  # Return None if no country in the list is found

def extract_years_from_prompt(question):
    """Extracts a single year or a start/end year range from a question string."""
    start_year, end_year = None, None
    # Pattern 1: Single year (e.g., "in 2010", "year 2010")
    single_year_match = re.search(r'\b(in|year|del)\s+(\d{4})\b', question, re.IGNORECASE)
    if single_year_match:
        year = int(single_year_match.group(2))
        return year, year  # Return single year as start and end

    # Pattern 2: Year range (e.g., "between 2000 and 2010", "from 2005 to 2015")
    range_match = re.search(r'\b(between|from)\s+(\d{4})\s+(and|to)\s+(\d{4})\b', question, re.IGNORECASE)
    if range_match:
        s_year = int(range_match.group(2))
        e_year = int(range_match.group(4))
        return min(s_year, e_year), max(s_year, e_year)  # Ensure start <= end

    # Pattern 3: Simple range like "2000-2010"
    simple_range_match = re.search(r'\b(\d{4})-(\d{4})\b', question)
    if simple_range_match:
        s_year = int(simple_range_match.group(1))
        e_year = int(simple_range_match.group(2))
        return min(s_year, e_year), max(s_year, e_year)

    # Pattern 4: After Year (e.g., "after 2015")
    after_match = re.search(r'\b(after|since)\s+(\d{4})\b', question, re.IGNORECASE)
    if after_match:
        start_year = int(after_match.group(2))
        # end_year remains None, signifying >= start_year

    # Pattern 5: Before Year (e.g., "before 2005")
    before_match = re.search(r'\b(before)\s+(\d{4})\b', question, re.IGNORECASE)
    if before_match:
        end_year = int(before_match.group(2))
        # start_year remains None, signifying <= end_year
        # Special case: if 'after' wasn't also found, return (None, end_year)
        if start_year is None:
            return None, end_year

    # Return extracted years (could be None, None; start, None; None, end; or start, end)
    # If single year patterns were matched first, they returned already.
    return start_year, end_year


def filter_df_by_years(df, year_col, start_year, end_year):
    """Filters a DataFrame based on a year column and a start/end year range."""
    if year_col not in df.columns:
        st.warning(f"Year column '{year_col}' not found.")
        return df

    try:
        # Ensure year column is numeric, coerce errors to NaT/NaN
        df[year_col] = pd.to_numeric(df[year_col], errors='coerce')
        # Drop rows where conversion failed, essential for comparison
        df_filtered = df.dropna(subset=[year_col]).copy()
        # Convert to integer only AFTER dropping NaN, avoids potential float issues
        df_filtered[year_col] = df_filtered[year_col].astype(int)
    except Exception as e:
        st.error(f"Could not convert year column '{year_col}' to numeric: {e}")
        return df  # Return original on error

    original_count = len(df_filtered)  # Count after potential NaNs are dropped

    if start_year is None and end_year is None:
        # No year filtering needed
        return df_filtered

    st.info(f"Filtering by years: Start={start_year}, End={end_year} on column '{year_col}'")

    # Apply filters based on provided start/end years
    if start_year is not None and end_year is not None:
        # Specific range or single year (where start_year == end_year)
        df_filtered = df_filtered[(df_filtered[year_col] >= start_year) & (df_filtered[year_col] <= end_year)]
    elif start_year is not None:
        # Only start year ("after X")
        df_filtered = df_filtered[df_filtered[year_col] >= start_year]
    elif end_year is not None:
        # Only end year ("before Y")
        df_filtered = df_filtered[df_filtered[year_col] <= end_year]

    filtered_count = len(df_filtered)
    if filtered_count == 0 and original_count > 0:  # Check if filtering removed all data
        st.warning(f"No data found for the specified year(s): {start_year if start_year else ''}-{end_year if end_year else ''}")
    elif filtered_count < original_count:
        st.write(f"Filtered data by year. Rows reduced from {original_count} to {filtered_count}.")

    return df_filtered


# ---------------------------------------------------------------------------------
# Load Model
# ---------------------------------------------------------------------------------
@st.cache_resource
def load_gpt2():
    try:
        generator = pipeline('text-generation', model='openai-community/gpt2')
        return generator
    except Exception as e:
        st.error(f"Failed to load GPT-2 model: {e}")
        return None

generator = load_gpt2()

# ---------------------------------------------------------------------------------
# Load Initial Data
# ---------------------------------------------------------------------------------
if 'data_labor' not in st.session_state:
    st.session_state['data_labor'] = load_data("labor")  # Or your default table

# ---------------------------------------------------------------------------------
# Streamlit App UI Starts Here
# ---------------------------------------------------------------------------------
st.title("Análisis de Datos con GPT-2 y Visualización Automática")

# Get the dataframe from session state
df = st.session_state.get('data_labor')

# --- Check if DataFrame is loaded ---
if df is None or df.empty:
    st.error("Failed to load data or data is empty. Please check Supabase connection and table 'labor'.")
    # Optionally add a button to retry loading
    if st.button("Retry Loading Data"):
        st.session_state['data_labor'] = load_data("labor")
        st.rerun()  # Rerun the script after attempting reload
else:
    # --- Section for the user question ---
    st.subheader("Pregúntame algo sobre los datos de 'labor'")
    question = st.text_input("Ejemplo: 'Cuál fue la fuerza laboral (labor force) en Germany entre 2010 y 2015?'")

    if question:
        # --- Main processing logic ---
        st.write("--- Análisis de la pregunta ---")  # Debug separator

        # Filter by Country
        unique_countries = df['geo'].unique().tolist() if 'geo' in df.columns else []
        extracted_country = extract_country_from_prompt_regex(question, unique_countries)

        filtered_df = df.copy()
        if extracted_country:
            if 'geo' in filtered_df.columns:
                filtered_df = filtered_df[filtered_df['geo'] == extracted_country]
                st.success(f"Filtrando datos para el país: {extracted_country}")
            else:
                st.warning("Columna 'geo' no encontrada para filtrar por país.")
        else:
            st.info("No se especificó un país o no se encontró. Mostrando datos para todos los países disponibles.")

        # Identify Columns
        numerical_cols = [col for col in filtered_df.columns if pd.api.types.is_numeric_dtype(filtered_df[col])]
        year_col_names = ['year', 'time', 'period', 'año']
        year_cols = [col for col in filtered_df.columns if col.lower() in year_col_names and col in numerical_cols]
        categorical_cols = [col for col in filtered_df.columns if pd.api.types.is_object_dtype(filtered_df[col]) and col != 'geo']

        # Extract Years and Filter DataFrame
        start_year, end_year = extract_years_from_prompt(question)
        year_col_to_use = None
        if year_cols:
            year_col_to_use = year_cols[0]
            filtered_df = filter_df_by_years(filtered_df, year_col_to_use, start_year, end_year)
        else:
            st.warning("No se pudo identificar una columna de año numérica para filtrar.")


        # --- GPT-2 Description Generation ---
        if generator:  # Check if model loaded successfully
            st.subheader("Descripción Automática (GPT-2)")
            # Create a concise context
            context_description = "The dataset contains labor data"
            context_info = f"Data for {extracted_country or 'all countries'}"

            if extracted_country:
                # If a specific country is filtered, mention it clearly
                context_description += f" specifically for {extracted_country}"
            else:
                # Otherwise, mention the broader scope if known (e.g., Europe)
                # If you load data for multiple countries by default, state that
                context_description += " covering multiple countries"  # Adjust if needed

            if year_col_to_use and (start_year is not None or end_year is not None):
                context_info += f" between years {start_year if start_year else 'start'} and {end_year if end_year else 'end'}"
            context_info += f". Columns include: {', '.join(filtered_df.columns.tolist())}."

            prompt = f"{context_info}\n\nQuestion: {question}\nAnswer based ONLY on the provided context:"
            try:
                st.info("Generando descripción...")  # Let user know it's working
                description = generator(prompt, max_new_tokens=200, num_return_sequences=1)[0]['generated_text']
                # Clean up the output to show only the answer part
                answer_part = description.split(prompt)[-1]  # Split by the prompt itself
                st.success("Descripción generada:")
                st.write(answer_part.strip())
            except Exception as e:
                st.error(f"Error generando descripción con GPT-2: {e}")
        else:
            st.warning("El modelo GPT-2 no está cargado. No se puede generar descripción.")


        # --- Visualization Section ---
        st.subheader("Visualización Automática")

        if filtered_df.empty:
            st.warning("No hay datos para mostrar después de aplicar los filtros.")

        # --- Logic for LINE PLOT ---
        elif year_col_to_use and numerical_cols:
            start_time_graph = time.time()
            potential_y_cols = [col for col in numerical_cols if col != year_col_to_use]
            y_col = None
            if not potential_y_cols:
                st.warning(f"No se encontraron columnas numéricas de datos (aparte de '{year_col_to_use}') para graficar contra el año.")
            else:
                labor_keywords = ['labor', 'labour', 'workforce', 'employment', 'lfpr', 'fuerza']  # Added 'fuerza'
                found_labor_col = False
                for col in potential_y_cols:
                    if any(keyword in col.lower() for keyword in labor_keywords):
                        y_col = col
                        st.info(f"Se encontró columna relevante: '{y_col}'. Usándola para el eje Y.")
                        found_labor_col = True
                        break
                if not found_labor_col:
                    y_col = potential_y_cols[0]
                    st.info(f"No se encontró columna específica. Usando la primera columna numérica disponible ('{y_col}') para el eje Y.")

            if y_col:
                x_col = year_col_to_use
                fig = go.Figure()
                title = f"{y_col} vs {x_col}"
                if extracted_country:
                    title += f" en {extracted_country}"
                if start_year is not None or end_year is not None:
                    year_range_str = ""
                    if start_year is not None:
                        year_range_str += str(start_year)
                    if end_year is not None:
                        year_range_str += f"-{end_year}" if start_year is not None else str(end_year)
                    if year_range_str:
                        title += f" ({year_range_str})"

                df_plot = filtered_df.sort_values(by=x_col)
                if y_col in df_plot.columns and x_col in df_plot.columns:
                    # Add color based on 'sex' if available
                    if 'sex' in df_plot.columns:
                        for sex_val in df_plot['sex'].unique():
                            df_subset = df_plot[df_plot['sex'] == sex_val]
                            fig.add_trace(go.Scatter(x=df_subset[x_col], y=df_subset[y_col], mode='lines+markers', name=str(sex_val)))
                        fig.update_layout(title=title, xaxis_title=x_col, yaxis_title=y_col)
                    else:
                        fig.add_trace(go.Scatter(x=df_plot[x_col], y=df_plot[y_col], mode='lines+markers', name=y_col))
                        fig.update_layout(title=title, xaxis_title=x_col, yaxis_title=y_col)
                    st.plotly_chart(fig)
                    end_time_graph = time.time()
                    st.write(f"Gráfico generado en: {end_time_graph - start_time_graph:.4f} segundos")
                else:
                    st.warning("Las columnas X o Y seleccionadas no existen en los datos filtrados.")

        # --- Logic for SCATTER PLOT ---
        elif numerical_cols and len(numerical_cols) >= 2:
            start_time_graph = time.time()
            st.subheader("Gráfico de Dispersión Sugerido")
            col1 = st.selectbox("Selecciona la primera columna numérica para el gráfico de dispersión:", numerical_cols)
            col2 = st.selectbox("Selecciona la segunda columna numérica para el gráfico de dispersión:", [c for c in numerical_cols if c != col1])
            if col1 and col2:
                fig = px.scatter(filtered_df, x=col1, y=col2, title=f"Gráfico de Dispersión: {col1} vs {col2}")
                st.plotly_chart(fig)
                end_time_graph = time.time()
                st.write(f"Gráfico generado en: {end_time_graph - start_time_graph:.4f} segundos")
            else:
                st.warning("Las columnas X o Y seleccionadas no existen en los datos filtrados.")

        # --- Logic for SCATTER PLOT ---
        # (Your scatter plot logic here...)
        elif numerical_cols and len(numerical_cols) >= (2 + (1 if year_col_to_use else 0)) :
             # ... (scatter plot code, ensuring cols exist) ...
             pass # Placeholder

        # --- Logic for BAR CHART ---
        # (Your bar chart logic here...)
        elif numerical_cols and categorical_cols:
             # ... (bar chart code, ensuring cols exist and aggregating if needed) ...
             pass # Placeholder
        else:
            # Only show this if no plots were generated above
            if not (year_col_to_use and y_col): # Check if line plot was attempted
                 st.info("No se encontraron columnas adecuadas o suficientes datos después del filtrado para generar un gráfico automáticamente.")