File size: 7,387 Bytes
d5b743a
 
 
6f70ef7
d5b743a
 
 
 
6f70ef7
d5b743a
6f70ef7
d5b743a
6f70ef7
 
d5b743a
 
5073fa8
d5b743a
6f70ef7
d5b743a
 
 
 
6f70ef7
d5b743a
 
5073fa8
6f70ef7
5073fa8
6f70ef7
 
 
 
5073fa8
 
6f70ef7
 
 
 
 
 
 
 
d5b743a
5073fa8
 
 
 
 
 
 
 
d5b743a
 
6f70ef7
d5b743a
 
 
6f70ef7
d5b743a
 
 
 
 
 
 
 
 
 
6f70ef7
d5b743a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f70ef7
d5b743a
 
 
 
 
 
 
6f70ef7
d5b743a
 
 
 
5073fa8
 
d5b743a
6f70ef7
d5b743a
 
5073fa8
d5b743a
 
6f70ef7
 
 
 
 
 
d5b743a
5073fa8
 
 
6f70ef7
5073fa8
 
334a58e
5073fa8
334a58e
5073fa8
6f70ef7
334a58e
5073fa8
 
 
d5b743a
 
 
 
 
6f70ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# ---------------------------------------------------------------------------------
# Aplicaci贸n principal para cargar el modelo, generar prompts y explicar los datos
# ---------------------------------------------------------------------------------

import streamlit as st  # type: ignore
import os
import re
import pandas as pd  # type: ignore
from dotenv import load_dotenv  # type: ignore # Para cambios locales
from supabase import create_client, Client  # type: ignore

# from pandasai import SmartDataframe  # type: ignore
from pandasai import SmartDatalake  # type: ignore # Porque ya usamos m谩s de un df (m谩s de una tabla de nuestra db)
from pandasai.llm.local_llm import LocalLLM  # type: ignore
from pandasai import Agent
import matplotlib.pyplot as plt
import time


# ---------------------------------------------------------------------------------
# Funciones auxiliares
# ---------------------------------------------------------------------------------


def generate_graph_prompt(user_query):
    prompt = f"""
            You are a senior data scientist analyzing European labor force data.

            Given the user's request: "{user_query}"

            1. Plot the relevant data using matplotlib:
            - Use pandas indexing with boolean conditions, not .query().
            - For example: df[(df['geo'] == 'Germany') & (df['year'] >= 2018)]
            - Include clear axis labels and a descriptive title.
            - Save the plot as an image file (e.g., temp_chart.png).
            
            2. After plotting, write a *concise analytical summary* of the trend based on those years. The summary should:
            - Use .diff() followed by .idxmax() and .idxmin() to find where the largest change occurs.
            - Use .loc[] to retrieve the corresponding year and value.
            - Calculate percent changes safely (check for divide-by-zero).
            - Avoid using .index() on float values.
            
            3. Store the summary in a variable named explanation.

            4. Return a result dictionary structured as follows:
            result = {{
                "type": "plot",
                "value": "temp_chart.png",
                "explanation": explanation
            }}
            IMPORTANT: Use only the data available in the input DataFrame.
            """
    return prompt


# ---------------------------------------------------------------------------------
# Configuraci贸n de conexi贸n a Supabase
# ---------------------------------------------------------------------------------

# Cargar variables de entorno desde archivo .env
load_dotenv()

# Conectar las credenciales de Supabase (ubicadas en "Secrets" en Streamlit)
SUPABASE_URL = os.getenv("SUPABASE_URL")
SUPABASE_KEY = os.getenv("SUPABASE_KEY")

# Crear cliente Supabase
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)


# Funci贸n para cargar datos de una tabla de Supabase
# Tablas posibles: fertility, geo data, labor, population, predictions
def load_data(table):
    try:
        if supabase:
            response = supabase.from_(table).select("*").execute()
            print(f"Response object: {response}")  # Inspeccionar objeto completo
            print(f"Response type: {type(response)}")  # Verificar tipo de objeto

            # Acceder a atributos relacionados a error o data
            if hasattr(response, 'data'):
                print(f"Response data: {response.data}")
                return pd.DataFrame(response.data)
            elif hasattr(response, 'status_code'):
                print(f"Response status code: {response.status_code}")
            elif hasattr(response, '_error'):  # Versiones antiguas
                print(f"Older error attribute: {response._error}")
                st.error(f"Error fetching data: {response._error}")
                return pd.DataFrame()
            else:
                st.info("Response object does not have 'data' or known error attributes. Check the logs.")
                return pd.DataFrame()

        else:
            st.error("Supabase client not initialized. Check environment variables.")
            return pd.DataFrame()
    except Exception as e:
        st.error(f"An error occurred during data loading: {e}")
        return pd.DataFrame()


# ---------------------------------------------------------------------------------
# Cargar datos iniciales
# ---------------------------------------------------------------------------------

labor_data = load_data("labor")
fertility_data = load_data("fertility")
# population_data = load_data("population")
# predictions_data = load_data("predictions") 

# ---------------------------------------------------------------------------------
# Inicializar LLM desde Ollama con PandasAI
# ---------------------------------------------------------------------------------

ollama_llm = LocalLLM(api_base="http://localhost:11434/v1", 
                      model="gemma3:12b",
                      temperature=0.1,  
                      max_tokens=8000)

# lm_studio_llm = LocalLLM(api_base="http://localhost:1234/v1")  # el modelo es gemma-3-12b-it-qat

# sdl = SmartDatalake([labor_data, fertility_data, population_data, predictions_data], config={"llm": ollama_llm}) # DataFrame PandasAI-ready.
# sdl = SmartDatalake([labor_data, fertility_data], config={"llm": ollama_llm})

# agent = Agent([labor_data], config={"llm": lm_studio_llm})
agent = Agent(
    [
        labor_data,
        fertility_data
    ],
    config={
        "llm": ollama_llm,
        "enable_cache": False,
        "enable_filter_extraction": False  # evita errores de parseo
    }
)

# ---------------------------------------------------------------------------------
# Configuraci贸n de la app en Streamlit
# ---------------------------------------------------------------------------------

# T铆tulo de la app
st.title("Europe GraphGen  :blue[Graph generator] :flag-eu:")

# Entrada de usuario para describir el gr谩fico
user_input = st.chat_input("What graphics do you have in mind")

if user_input:
    with st.spinner('Generating answer...'):
        try:
            print(f"\nGenerating prompt...\n")
            prompt = generate_graph_prompt(user_input)
            print(f"\nPrompt generated: {prompt}\n")

            start_time = time.time()

            answer = agent.chat(prompt)
            print(f"\nAnswer type: {type(answer)}\n")  # Verificar tipo de objeto
            print(f"\nAnswer content: {answer}\n")  # Inspeccionar contenido de la respuesta
            print(f"\nFull result: {agent.last_result}\n")

            full_result = agent.last_result
            explanation = full_result.get("explanation", "")

            elapsed_time = time.time() - start_time
            print(f"\nExecution time: {elapsed_time:.2f} seconds\n")

            if isinstance(answer, str) and os.path.isfile(answer):
                # Si el output es una ruta v谩lida a imagen
                im = plt.imread(answer)
                st.image(im)
                os.remove(answer)  # Limpiar archivo temporal

                if explanation:
                    st.markdown(f"*Explanation:* {explanation}")
            else:
                # Si no es una ruta v谩lida, mostrar como texto
                st.markdown(str(answer))

        except Exception as e:
            st.error(f"Error generating answer: {e}")