Spaces:
Runtime error
Runtime error
File size: 14,025 Bytes
5ee7598 6eff5e7 580aef7 6eff5e7 2fad322 6eff5e7 5ee7598 6eff5e7 6004e76 6eff5e7 963bf46 6eff5e7 580aef7 6eff5e7 580aef7 6eff5e7 a6756ef 963bf46 580aef7 a6756ef 5ee7598 091bb76 580aef7 5b4e16a 5ee7598 5b4e16a 5ee7598 5b4e16a 5ee7598 5b4e16a 6004e76 580aef7 963bf46 6eff5e7 6004e76 6eff5e7 6004e76 6eff5e7 6004e76 6eff5e7 6004e76 963bf46 6eff5e7 5ee7598 6004e76 6eff5e7 580aef7 6eff5e7 6004e76 091bb76 81ca652 091bb76 300debd 091bb76 5b4e16a 091bb76 6eff5e7 963bf46 6eff5e7 963bf46 6eff5e7 e7933f3 6eff5e7 963bf46 2fad322 963bf46 6eff5e7 e7933f3 6eff5e7 81ca652 fd61399 6eff5e7 0532283 81ca652 fd61399 e7933f3 6eff5e7 0532283 6eff5e7 81ca652 fd61399 6eff5e7 fd61399 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
from sentence_transformers import util, SentenceTransformer
from transformers import BertModel
from nltk.tokenize import sent_tokenize
from nltk import word_tokenize, pos_tag
import torch
import numpy as np
import tqdm
def compute_sentencewise_scores(model, query_sents, candidate_sents, tokenizer=None):
if isinstance(model, SentenceTransformer):
# if the model is using SentenceTrasformer style
q_v, c_v = get_embedding(model, query_sents, candidate_sents)
elif isinstance(model, BertModel):
# if the model is BERT-style model using transformers library
inputs = tokenizer(
query_sents + candidate_sents,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
)
inputs.to(model.device)
result = model(**inputs)
embeddings = result.last_hidden_state[:, 0, :].detach().cpu().numpy()
q_v = embeddings[:len(query_sents)]
c_v = embeddings[len(query_sents):]
else:
raise ValueError('model not supported at the time')
assert(q_v.shape[1] == c_v.shape[1])
assert(q_v.shape[0] == len(query_sents))
assert(c_v.shape[0] == len(candidate_sents))
return util.cos_sim(q_v, c_v)
def get_embedding(model, query_sents, candidate_sents):
q_v = model.encode(query_sents)
c_v = model.encode(candidate_sents)
return q_v, c_v
def get_top_k(score_mat, K=3):
"""
Pick top K sentences to show
"""
picked_scores, picked_sent = torch.sort(-score_mat, axis=1)
picked_sent = picked_sent[:,:K]
picked_scores = -picked_scores[:,:K]
return picked_sent, picked_scores
def get_words(sent):
"""
Input: list of sentences
Output: list of list of words per sentence, all words in, index of starting words for each sentence
"""
words = []
sent_start_id = [] # keep track of the word index where the new sentence starts
counter = 0
for x in sent:
w = word_tokenize(x)
nw = len(w)
counter += nw
words.append(w)
sent_start_id.append(counter)
words = [word_tokenize(x) for x in sent]
all_words = [item for sublist in words for item in sublist]
sent_start_id.pop()
sent_start_id = [0] + sent_start_id
assert(len(sent_start_id) == len(sent))
return words, all_words, sent_start_id
def get_match_phrase(w1, w2, method='pos'):
"""
Input: list of words for query and candidate text
Output: word list and binary mask of matching phrases between the inputs
"""
mask1 = np.zeros(len(w1))
mask2 = np.zeros(len(w2))
if method == 'pos':
# POS tags that should be considered for matching phrase
include = [
'NN',
'NNS',
'NNP',
'NNPS',
'LS',
'SYM',
'FW'
]
pos1 = pos_tag(w1)
pos2 = pos_tag(w2)
for i, (w, p) in enumerate(pos2):
for j, (w_, p_) in enumerate(pos1):
if w.lower() == w_.lower() and p in include:
mask2[i] = 1
mask1[j] = 1
return mask1, mask2
def remove_spaces(words, attrs):
# make the output more readable by removing unnecessary spacings from the tokenizer
# e.g.
# 1. spacing for parenthesis
# 2. spacing for single/double quotations
# 3. spacing for commas and periods
# 4. spacing for possessive quotations
assert(len(words) == len(attrs))
word_out, attr_out = [], []
idx, single_q, double_q = 0, 0, 0
while idx < len(words):
# stick to the word that appears right before
if words[idx] in [',', '.', '%', ')', ':', '?', ';', "'s", '”', "''"]:
ww = word_out.pop()
aa = attr_out.pop()
word_out.append(ww + words[idx])
attr_out.append(aa)
idx += 1
# stick to the word that appears right after
elif words[idx] in ["(", '“']:
word_out.append(words[idx] + words[idx+1])
attr_out.append(attrs[idx+1])
idx += 2
# quotes
elif words[idx] == '"':
double_q += 1
if double_q == 2:
# this is closing quote: stick to word before
ww = word_out.pop()
aa = attr_out.pop()
word_out.append(ww + words[idx])
attr_out.append(aa)
idx += 1
double_q = 0
else:
# this is opening quote: stick to the word after
word_out.append(words[idx] + words[idx+1])
attr_out.append(attrs[idx+1])
idx += 2
elif words[idx] == "'":
single_q += 1
if single_q == 2:
# this is closing quote: stick to word before
ww = word_out.pop()
aa = attr_out.pop()
word_out.append(ww + words[idx])
attr_out.append(aa)
idx += 1
single_q = 0
else:
if words[idx-1][-1] == 's': #possessive quote
# stick to the word before, reset counter
ww = word_out.pop()
aa = attr_out.pop()
word_out.append(ww + words[idx])
attr_out.append(aa)
idx += 1
single_q = 0
else:
# this is opening quote: stick to the word after
word_out.append(words[idx] + words[idx+1])
attr_out.append(attrs[idx+1])
idx += 2
elif words[idx] == '``':
# this is opening quote: stick to the word after, but change to real double quote
word_out.append('"' + words[idx+1])
attr_out.append(attrs[idx+1])
idx += 2
elif words[idx] == "''":
# this is closing quote: stick to word before, but change to real double quote
ww = word_out.pop()
aa = attr_out.pop()
word_out.append(ww + '"')
attr_out.append(aa)
idx += 1
else:
word_out.append(words[idx])
attr_out.append(attrs[idx])
idx += 1
assert(len(word_out) == len(attr_out))
return word_out, attr_out
def scale_scores(arr, vmin=0.1, vmax=1):
# rescale positive and negative attributions to be between vmin and vmax.
# while keeping 0 at 0.
pos_max, pos_min = np.max(arr[arr > 0]), np.min(arr[arr > 0])
out = (arr - pos_min) / (pos_max - pos_min) * (vmax - vmin) + vmin
idx = np.where(arr == 0.0)[0]
out[idx] = 0.0
return out
def mark_words(query_sents, words, all_words, sent_start_id, sent_ids, sent_scores):
"""
Mark the words that are highlighted, both by in terms of sentence and phrase
"""
num_query_sent = sent_ids.shape[0]
num_cand_sent = sent_ids.shape[1]
num_words = len(all_words)
output = dict()
output['all_words'] = all_words
output['words_by_sentence'] = words
# for each query sentence, mark the highlight information
for i in range(num_query_sent):
output[i] = dict()
for j in range(1, num_cand_sent+1): # for each number of selected sentences from candidate
query_words = word_tokenize(query_sents[i])
is_selected_sent = np.zeros(num_words)
is_selected_phrase = np.zeros(num_words)
word_scores = np.zeros(num_words)
# for each selected sentences from the candidate, compile information
for sid, sscore in zip(sent_ids[i][:j], sent_scores[i][:j]):
#print(len(sent_start_id), sid, sid+1)
if sid+1 < len(sent_start_id):
sent_range = (sent_start_id[sid], sent_start_id[sid+1])
is_selected_sent[sent_range[0]:sent_range[1]] = 1
word_scores[sent_range[0]:sent_range[1]] = sscore
_, is_selected_phrase[sent_range[0]:sent_range[1]] = \
get_match_phrase(query_words, all_words[sent_range[0]:sent_range[1]])
else:
is_selected_sent[sent_start_id[sid]:] = 1
word_scores[sent_start_id[sid]:] = sscore
_, is_selected_phrase[sent_start_id[sid]:] = \
get_match_phrase(query_words, all_words[sent_start_id[sid]:])
# scale the word_scores: maximum value gets the darkest, minimum value gets the lightest color
if j > 1:
word_scores = scale_scores(word_scores)
# update selected phrase scores (-1 meaning a different color in gradio)
word_scores[is_selected_sent+is_selected_phrase==2] = -0.5
output[i][j] = {
'is_selected_sent': is_selected_sent,
'is_selected_phrase': is_selected_phrase,
'scores': word_scores
}
return output
def get_highlight_info(model, tokenizer, text1, text2, K=None, top_pair_num=5):
"""
Get highlight information from two texts
"""
sent1 = sent_tokenize(text1) # query
sent2 = sent_tokenize(text2) # candidate
score_mat = compute_sentencewise_scores(model, sent1, sent2, tokenizer=tokenizer)
if K is None: # if K is not set, get all information
K = score_mat.shape[1]
sent_ids, sent_scores = get_top_k(score_mat, K=K)
words2, all_words2, sent_start_id2 = get_words(sent2)
info = mark_words(sent1, words2, all_words2, sent_start_id2, sent_ids, sent_scores)
# get top sentence pairs from the query and candidate (score, index_pair) to show upfront
top_pairs = []
ii = np.unravel_index(np.argsort(np.array(sent_scores).ravel())[-top_pair_num:], sent_scores.shape)
for i, j in zip(ii[0][::-1], ii[1][::-1]):
score = sent_scores[i,j].item()
index_pair = (i, sent_ids[i,j].item())
top_pairs.append((score, index_pair)) # list of (score, (sent_id_query, sent_id_candidate))
# convert top_pairs to corresponding highlights format for GRadio Interpretation component
top_pairs_info = dict()
count = 0
for s, (sidq, sidc) in top_pairs:
q_sent = sent1[sidq]
c_sent = sent2[sidc]
q_words = word_tokenize(q_sent)
c_words = word_tokenize(c_sent)
mask1, mask2 = get_match_phrase(q_words, c_words)
sc = 0.5
mask1 *= -sc # mark matching phrases as blue (-1: darkest)
mask2 *= -sc # mark matching phrases as blue
assert(len(mask1) == len(q_words) and len(mask2) == len(c_words))
# spacing
q_words, mask1 = remove_spaces(q_words, mask1)
c_words, mask2 = remove_spaces(c_words, mask2)
top_pairs_info[count] = {
'query': {
'original': q_sent,
'interpretation': list(zip(q_words, mask1))
},
'candidate': {
'original': c_sent,
'interpretation': list(zip(c_words, mask2))
},
'score': s,
'sent_idx': (sidq, sidc)
}
count += 1
return sent_ids, sent_scores, info, top_pairs_info
### Document-level operations
def predict_docscore(doc_model, tokenizer, query, titles, abstracts, batch=20):
# compute document scores for each papers
# concatenate title and abstract
title_abs = []
for t, a in zip(titles, abstracts):
if t is not None and a is not None:
title_abs.append(t + ' [SEP] ' + a) # title + abstract
num_docs = len(title_abs)
no_iter = int(np.ceil(num_docs / batch))
scores = []
with torch.no_grad():
# batch
for i in tqdm.tqdm(range(no_iter)):
# preprocess the input
inputs = tokenizer(
[query] + title_abs[i*batch:(i+1)*batch],
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
)
inputs.to(doc_model.device)
result = doc_model(**inputs)
# take the first token in the batch as the embedding
embeddings = result.last_hidden_state[:, 0, :].detach().cpu().numpy()
# compute cosine similarity
q_emb = embeddings[0,:]
p_emb = embeddings[1:,:]
nn = np.linalg.norm(q_emb) * np.linalg.norm(p_emb, axis=1)
scores += list(np.dot(p_emb, q_emb) / nn)
assert(len(scores) == num_docs)
return scores
def compute_document_score(doc_model, tokenizer, query_title, query_abs, papers, batch=5):
scores = []
titles = []
abstracts = []
urls = []
years = []
citations = []
for p in papers:
if p['title'] is not None and p['abstract'] is not None:
titles.append(p['title'])
abstracts.append(p['abstract'])
urls.append(p['url'])
years.append(p['year'])
citations.append(p['citationCount'])
if query_title == '':
query = query_abs
else:
query = query_title + ' [SEP] ' + query_abs # feed in submission title and abstract
scores = predict_docscore(doc_model, tokenizer, query, titles, abstracts, batch=batch)
assert(len(scores) == len(abstracts))
idx_sorted = np.argsort(scores)[::-1]
titles_sorted = [titles[x] for x in idx_sorted]
abstracts_sorted = [abstracts[x] for x in idx_sorted]
scores_sorted = [scores[x] for x in idx_sorted]
urls_sorted = [urls[x] for x in idx_sorted]
years_sorted = [years[x] for x in idx_sorted]
citations_sorted = [citations[x] for x in idx_sorted]
return titles_sorted, abstracts_sorted, urls_sorted, scores_sorted, years_sorted, citations_sorted |